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Chapter 1

Introduction

1.1 Background

The early works of stochastic filtering started with the problem of statis-
tically extracting the true signal, xk at time k, when the measurement,
yk of this true signal, xk, is corrupted by noise, vk. The main objective
considered was to estimate xk based on the knowledge of y up to time k.
The stochastic filtering theory developed significantly in the early 1940’s
due to the pioneering works of two celebrated mathematicians, Norbert
Wiener and A. N. Kolmogorov, who solved the above filtering problem
independently. While Kolmogorov’s approach was based on the projection
theorem on a Hilbert space, Wiener’s solution was based on (cross) cor-
relation of signal and observation. Wiener’s key assumptions were that
(1) the processes are scalar and (2) the signal and noise processes are
jointly stationary. Extension to the non stationary case is not so obvious
in Wiener’s set up, while to extend it to the vector case, the analysis be-
came highly complicated. The real breakthrough came finally through the
seminal contribution of R. E. Kalman in the late 50’s, popularly known as
the Kalman filter. Kalman introduced a model for the signal, which was
a dramatic paradigm shift. He came up with the dynamic state space for-
mulation, which can easily cater for non stationary and multi dimensional
problems. The Kalman filter found immediate sensational success in the
space missions and today the Kalman filter is used practically in every
branch of science and engineering. The solution obtained is optimal in the
minimum mean square sense and it is recursive in nature, thus allowing on
line estimation. However, the Kalman filter is restricted by the assump-
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1.2. MOTIVATION

tions of the linear-Gaussian model. On the contrary, nonlinearity and/or
non-Gaussianity is abound in the physical world, which motivated the
development of different nonlinear filters, such as the extended Kalman fil-
ter, Gaussian sum filter and filters based on different numerical quadrature
rules. From the early 90’s, a class of Monte Carlo simulation based filters,
popularly known as Particle filters have appeared to dominate this field
due to their flexibility in adapting nonlinearity and/or non-Gaussianity
without any ad-hoc assumptions on the models.

1.2 Motivation

Nonlinear non-Gaussian state space models are a quite flexible framework
for modeling time series, which often arise in many different practical appli-
cations in science and engineering. In this framework, the typical problem
of interest is to infer the state of a dynamic system sequentially using a
sequence of noisy measurements. Optimal estimate for such models can
not generally be obtained in closed form and as a result, many different
approximate methods have been proposed as outlined in the previous sec-
tion. Particle filtering methods were introduced in their modern forms
by the pioneering contributions of Gordon et al. (1993). Since then, they
have become a very popular class of algorithms for solving such problems.
The main advantages of this class of algorithm is that they do not make
any ad-hoc approximation on the models and the basic algorithm is easy
to implement and modular in nature. With these flexibilities, they have
been successfully applied for sequential inferences in very complex systems,
which were previously thought to be intractable. The success has naturally
generated a lot of research interest in this area across different disciplines.
Consequently, researchers have started addressing different theoretical is-
sues and many variants of particle filters with successive improved features
have been proposed over the times. This is an active area of research and
there are many issues that are either not properly addressed or still open.

So far we have discussed the emergence of the particle filter, which pro-
vides a numerical solution to the Bayesian filtering problem sequentially
using Monte Carlo methods. The complete solution of the filtering problem
is given by the posterior distribution of the state given a set of observations.
This is in general, analytically intractable, but can be successfully approx-
imated by the particle filters in the form of (weighted) random samples,
also known as particles. As we will be describing in Chapter 2, the random
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CHAPTER 1. INTRODUCTION

samples are obtained from a different distribution, called the importance
distribution (or the importance function), which is ideally supposed to be
as close as possible to the posterior. Although particle filtering is an el-
egant way of approximating the posterior, the efficiency of the method
depends heavily on the selection of the importance distribution. Usually
in practice, the ‘naive’ proposal p(xk|xk−1) is used as it is easily available
from the model (Gordon et al. (1993)). However, by using the naive pro-
posal to explore the state space, a lot of samples are wasted, especially
when the measurement is very informative. To make the method more
effective importance functions of the form π = p(xk|xk−1, yk), i.e., the one
which incorporates the recent observation as well, are suggested in Liu and
Chen (1998) and Doucet et al. (2000). It has also been shown by Doucet
et al. (2000) that the aforementioned importance function is optimal in
the sense that the variance of the (unnormalized) importance weights con-
ditional upon the trajectory x0:k−1 ≡ (x1, x2, . . . , xk−1) and observations
y1:k ≡ (y1, y2, . . . , yk) is minimum. In practice, however, there are two
major prohibitive drawbacks for using this type of importance function.
Firstly, drawing samples according to p(xk|xk−1, yk) is, in general, diffi-
cult. Secondly, it is also difficult to get the analytical expression which is
needed for the weight update. Naturally, a lot of ongoing research efforts
have been devoted on how best to approximate this optimal importance
function. This forms the basis of our Chapter 3.

The particle filter provides us with the weighted particle approximation
of the posterior. However, for inference purposes, often a point estimate is
much more convenient. In principle, one can extract any such point esti-
mate from the posterior. One such popular point estimate is the minimum
mean square error (MMSE) estimate, which can be easily obtained as the
mean of the weighted particles (Doucet et al. (2000)). However, in certain
applications like target tracking, where this posterior is often multi modal,
the mean may not be always meaningful. For such a scenario, another
point estimate, namely the maximum a posteriori (MAP) estimate, which
corresponds to the maximum of the posterior, may be more relevant. We
found that the MAP estimator has not been adequately addressed in the
particle filter literature. Usually in practice, the particle with the highest
weight is naively taken as the MAP estimate, but recently it has been
shown that this is not the true MAP estimator. Subsequent developments
for MAP in the filtering and smoothing scenarios form the basis of Chapter
4.
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1.3. LAYOUT AND CONTRIBUTIONS

In many situations, the state space model also depends on unknown
parameters and their estimation is also of immense interest. The parame-
ter estimation problem for a general state space model using particle based
methods has generated a lot of interest over the past few years. In this
framework, general solutions for parameter estimation, which are useful
for any model, are still limited in performance. This is an active area of
research and lot of research activities are going on around this theme be-
cause of its enormous practical interest. We have discussed the parameter
estimation problem and proposed some new methods for estimating the
parameters in Chapter 5.

This area is far from mature, at least in theoretical aspects and there
are still many open problems which require further research attention.
Possible directions for future research are discussed in Chapter 6.

1.3 Layout and contributions

The thesis is organized into six chapters. The contents of the remaining
chapters are briefly summarized as follows.

Chapter 2 This chapter includes a brief overview of particle filtering
methods. Starting with the foundation of Bayesian filtering, we
present a very basic review of Monte Carlo methods and Importance
Sampling. Next, we explain the Sequential Importance Sampling
method. We then discuss the problem of degeneracy associated with
this method which is followed by the Resampling step to mitigate
this problem. At this stage, having discussed all the key ingredients,
we explain a generic particle filter algorithm.

Chapter 3 The key question in particle filtering is a suitable choice of
the importance function. The optimal importance function as de-
scribed in Doucet et al. (2000) is difficult to obtain in most practical
situations. The main contribution of this chapter is determining an
approximation of the optimal importance function using the moment
matching method. We start this chapter with describing the role
of the importance function in particle filtering methods and subse-
quently define the optimal importance function, which incorporates
information from the most recent observation. This optimal impor-
tance function is rarely available analytically except in special situa-
tions. One such case is the celebrated Heston model with jumps for
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CHAPTER 1. INTRODUCTION

(unobserved) volatility of a stock price process, which has been out-
lined in Appendix B. Subsequently we introduce a new Gaussian im-
portance function (EMM) approximating this optimal function using
moment matching methods and outline its implementation. Next, we
describe other existing Gaussian importance functions (LIN, GHQ,
JUQ, UPF) (Doucet et al. (2000); Guo et al. (2005); van der Merwe
et al. (2000)), we outline their differences and compare them numer-
ically. The performances of different importance functions are also
compared in terms of Kullback-Leibler divergence. This chapter is
based on (Saha et al. (2009b, 2007, 2006); Aihara et al. (2008)).

Chapter 4 The main focus of this chapter is the development of a new
smoothed marginal maximum a posteriori (MAP) estimator from the
available particle cloud representation of the marginal smoother. We
start with extracting the MAP estimate from the particle cloud rep-
resentation of the filter distribution. Usually, the particle with the
highest weight is taken as MAP. However, it has been shown recently
that this is not the most appropriate MAP estimator (Cappé et al.
(2007); Driessen and Boers (2008a)). Another popular approach is
the kernel based method. But this is computationally demanding and
needs a bandwidth selection. Here we describe two other alternative
approaches to calculate the filter MAP estimates based on a running
particle filter, viz. particle based filter MAP (Pf-MAP) (Driessen
and Boers (2008a)) and End Point Viterbi-Godsill MAP (EP-VGM)
(Godsill et al. (2001)) and subsequently we compare them. We pro-
pose some efficiency improvement schemes for particle based filter
MAP and study some of them further. We are then in a position to
develop the smoothed marginal MAP estimator as mentioned above,
when either a forward-backward or two filter smoother is used to
generate the particle clouds. The smoothed marginal MAP estima-
tor is then applied to estimate the unknown initial state of a dynamic
system. This chapter is based on (Saha et al. (2009c, 2008b,a)).

Chapter 5 There are many approaches to the parameter estimation prob-
lem for state space models. In this chapter, we specifically develop
algorithms for estimating the parameters without introducing any
artificial dynamics. The artificial noise turns the fixed parameter
into a slowly varying one. Here we introduce some new particle fil-
tering/smoothing based schemes, where we avoid any effect of the

7



1.3. LAYOUT AND CONTRIBUTIONS

artificial dynamics on the (final) estimate of the parameters. We
start with the idea of the augmented state space without any param-
eter dynamics and apply this method to an application of immense
practical importance in mathematical finance, where we estimate the
stochastic volatility and the model parameters of the well known He-
ston model with jumps (Bates (1996)). Next, we explain the idea
of smoothed marginal MAP as developed in chapter 4 to estimate
the parameters. Subsequently, we discuss the parameter estimation
method using a marginalized particle filter. Finally, we introduce
another parameter estimation method which is very effective when
the available observation data is short. We also outline the possible
limitation of each method. This chapter is based on (Saha et al.
(2008b,a, 2009a); Aihara et al. (2008)).

Chapter 6 This chapter presents conclusions and recommendations on
the possible directions for future research.
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Chapter 2

A brief overview of particle
filtering methods

2.1 Introduction

Optimal estimation problems for general state space models do not typi-
cally admit a closed form solution. However, modern Monte Carlo methods
have opened the door to solve such complex estimation problems. Particle
filters are a popular class of such Monte Carlo based algorithms, which
solve these estimation problems numerically in a recursive manner. This
chapter intends to serve as an introduction to the basic particle filter, which
plays a pivotal role in our subsequent works.

2.2 Dynamic modeling and Bayesian filtering

For simplicity, consider the following nonlinear dynamic system given by

xk = f(xk−1, wk) (2.2.1)

yk = h(xk, vk) (2.2.2)

where xk are the unobservable system values (the state) with initial (prior)
density p(x0) and yk are the observed values (the measurements). The pro-
cess noises wk, k = 1, 2, · · · are assumed to be independent. So are the
measurement noises vk, k = 1, 2, · · · . Furthermore, (wk) is assumed to
be independent of (vk). In this model, we assume that the probability
density functions for wk and vk are known. The above model can also be

9



2.2. DYNAMIC MODELING AND BAYESIAN FILTERING

characterized in terms of its probabilistic description via the state transi-
tion density p(xk|xk−1) and the observation density p(yk|xk). Note that,
here we assume xk is Markovian, i.e. the conditional density of xk given
the past state x0:k−1 ≡ (x0, x1, . . . , xk−1), depends only on xk−1. Fur-
thermore, the conditional density of yk given the state x0:k and the past
observations y0:k−1, depends only on xk. Such nonlinear dynamic systems
can be found abundantly in many areas of science and engineering, such
as target tracking, computer vision, terrain navigation and finance among
others. The main statistical problem related to this type of state-space
model is to estimate the state of the dynamic system xk in some optimal
manner from all the noisy observations y1:k, up to time k. This is known
as the filtering problem. The complete solution to this estimation problem
can be given by the conditional density or filtered density p(xk|y1:k), con-
taining all available statistical information. For a point estimate, one can,
for example, consider the corresponding conditional mean or maximum a
posteriori (MAP) of this filtered density. A simple application of the Bayes
rule leads to

p (xk|y1:k) =
p (xk|y1:k−1) p (yk|xk)∫

p (xk|y1:k−1) p (yk|xk) dxk

(2.2.3)

where p (xk|y1:k−1) =

∫
p (xk|xk−1) p (xk−1|y1:k−1) dxk−1(2.2.4)

Equation (2.2.4) is generally referred to as the prediction equation and
(2.2.3) as the update equation. Thus, starting from the initial density
p(x0) one can, at least in principle, recursively arrive at the desired density
p(xk|y1:k). However, analytical solution is available only for a restrictive
set of cases where the posterior density can be characterized by a suffi-
cient statistic of fixed and finite dimension. This happens, for example,
when both the system and observation equation (2.2.1)–(2.2.2) are linear,
driven by Gaussian white noises, in which the posterior is Gaussian and
completely characterized by the conditional mean and conditional covari-
ance. For this case, the recursive propagation of the sufficient statistic
can be obtained analytically using the Kalman filter. However, due to
ubiquitous presence of nonlinearity and non-Gaussianity in most practical
problems, it is not possible to obtain an analytical solution. As a result,
analytical approximations such as the extended Kalman filter (EKF) and
Gaussian sum filter (GSF) are developed (Anderson and Moore (1979);
Bagchi (1993); Jazwinski (1970)). The extended Kalman filter is based on
local linearization of the state and measurement equations along the tra-
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jectories. Although EKF, and its variants, have been successfully applied
to many nonlinear filtering problems, whenever there is substantial non-
linearity in the system, or the noises are significantly non Gaussian, EKF
exhibits very poor performances. In GSF, the posterior is approximated
by a weighted sum of Gaussian densities. However, the recursive imple-
mentation of the algorithm is not trivial and the number of components in
general, can grow exponentially with time (Ristic et al. (2004)). With easy
availability of computers, other approximate methods are proposed such as
using numerical integration to arrive at the solutions (Kitagawa (1987)),
the unscented Kalman filter (Julier and Uhlmann (1997); Wan and van der
Merwe (2000)) and the Gaussian quadrature Kalman filter (Ito and Xiong
(2000)).

The Particle filtering (PF) method, on the other hand, uses the Monte
Carlo simulation technique to reach a solution. Though the methods were
introduced in the 1960’s and 70’s (Handschin and Mayne (1969); Handschin
(1970); Akashi and Kumamoto (1975)), severe computational limitations
may have stopped researchers to pursue that line. Another not so obvious
reason is that all the early implementations were based on plain sequential
importance sampling, which, as we will be describing later, suffers from
’degeneracy’ over time. This phenomenon was not clearly identified and
addressed until the seminal work of Gordon et al. (1993). Starting with
this pioneering work, together with the advent of more and more powerful
computers, the PF methods have started receiving enormous attention
(West (1993); Liu and Chen (1998); Pitt and Shephard (1999); Doucet et
al. (2001); Arulampalam et al. (2002)).

The biggest advantage of the PF is that the method can easily adapt
to the nonlinearity in the model and/or non-Gaussian noises and as such,
ad-hoc approximation on the model for the purpose of analytical tractabil-
ity is not required. The PF methods are often referred to as sequential
Monte Carlo methods (SMC’s), although in strict sense PF is a sub class
of SMC methods (Doucet and Johansen (2009)). Unless stated otherwise,
we will use SMC and PF interchangeably in this chapter. In this method,
probability distributions are represented by a cloud of particles (Monte
Carlo samples). Particles are recursively generated via Monte Carlo sim-
ulation from a so called importance function, π(·), also often referred to
as proposal distribution. Furthermore, each particle receives an impor-
tance weight attached to it. The resulting distributions (represented by
the particle clouds) do converge to the true filtered distribution as the

11



2.3. PRELIMINARIES

Monte Carlo sample size tends to infinity (Crisan and Doucet (2002)).
PF is proving to be a dependable method for stochastic dynamic estima-
tion in real time, whose applications include target tracking, computer vi-
sions, robotics and mathematical finance among others. As a result of this
popularity, many tutorials on particle filters have already been published
(Doucet et al. (2001); Arulampalam et al. (2002); Chen (2003); Cappé et
al. (2007); Doucet and Johansen (2009); Gustafsson (2009)).

This chapter serves as an initial exposition to the subject of particle
filtering. As mentioned earlier, a number of tutorials/review papers are
already available in the literature and as such we will not be repeating
those in great detail. The organization of this chapter is as follows. We
start with a very basic review of Monte Carlo methods and Importance
Sampling (IS). Subsequently, we present Sequential Importance Sampling
(SIS) method. We then discuss the limitations of this method and show
how the Resampling step, first introduced by Gordon et al. (1993) in this
context, can partially mitigate the problem. Next we describe a generic
particle filter algorithm followed by concluding remarks.
Before proceeding to the next section, we note that the joint posterior
p(x0:k|y1:k) can be recursively obtained as

p(x0:k|y1:k) =
p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)

p(yk|y1:k−1)

=
p(yk|x0:k, y1:k−1)p(xk|x0:k−1, y1:k−1)p(x0:k−1|y1:k−1)

p(yk|y1:k−1)
. (2.2.5)

Now, using the Markovian nature of the model given by (2.2.1)–(2.2.2),
one can write equation (2.2.5) as

p(x0:k|y1:k) =
p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1)

p(yk|y1:k−1)

∝ p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1). (2.2.6)

The above recursion forms the basis of most of the particle filters.

2.3 Preliminaries

2.3.1 Basics of Monte Carlo Methods

Suppose we are able to sample N independent random variables, x
(i)
0:k ∼

p(x0:k|y1:k) for i = 1, . . . , N . Then the Monte Carlo method approximates

12
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p(x0:k|y1:k) by the empirical measure (Doucet et al. (2001))

PN (dx0:k|y1:k) =
1

N

N∑

i=1

δ
x
(i)
0:k

(dx0:k), (2.3.1)

where δ
x
(i)
0:k

(dx0:k) denotes the Dirac-delta mass located in x
(i)
0:k. Subse-

quently one can approximate the marginal p(xk|y1:k) as

PN (dxk|y1:k) =
1

N

N∑

i=1

δ
x
(i)
k

(dxk), (2.3.2)

and expectations of the form

I(gk) =

∫
gk (x0:k) p (x0:k|y1:k) dx0:k (2.3.3)

as

IN (gk) =

∫
gk (x0:k)PN (dx0:k|y1:k)

=
1

N

N∑

i=1

gk(x
(i)
0:k). (2.3.4)

This estimate is unbiased and according to the law of large numbers, IN

will almost surely converge to I (Ristic et al. (2004)). Moreover, if the
variance of gk(x0:k),

σ2 =

∫
(gk(x0:k) − I)2p (x0:k|y1:k) dx0:k

is finite, the central limit theorem will hold and the estimation error will
converge in distribution as

limN−→∞

√
N(IN − I) ∼ N (0, σ2).

The error of the estimate, e = (IN − I), is of order O(N− 1
2 ), thus the

rate of convergence of this estimate is independent of the dimension of the
integrand. In contrast, any deterministic integration method has a rate
of convergence that decreases as the dimension of the integrand increases
(Doucet et al. (2001)). This is one of the main advantages of Monte Carlo
integration methods, although the rate of convergence is very slow.
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Unfortunately, it is usually not possible to sample effectively from the
posterior p(x0:k|y1:k), which is typically multivariate, nonstandard, and
only known up to a proportionality constant (Doucet et al. (2001)). A
possible solution addressed in the statistical literature, is to use importance
sampling methods. The idea behind this is explained next.

2.3.2 Importance Sampling (IS)

Suppose we can not generate samples directly from p(x0:k|y1:k) to estimate
IN using equation (2.3.4). One can introduce an arbitrary distribution
π(x0:k|y1:k), from which it is easy to sample and whose support covers the
support of p(x0:k|y1:k). This distribution is known as importance distribu-
tion (also often referred to as proposal distribution) and the integration in
equation (2.3.3) can be rewritten as

I(gk) =

∫
gk (x0:k) w̄(x0:k)π (x0:k|y1:k) dx0:k, (2.3.5)

where w̄(x0:k) is known as the importance weight, which is given by

w̄(x0:k) =
p(x0:k|y1:k)

π(x0:k|y1:k)
, (2.3.6)

and assumed to be upper bounded. However, often the target distribu-
tion p(x0:k|y1:k) is known only upto a normalizing factor, particularly
in Bayesian statistical inference problems (Cappé et al. (2007)). Then
the importance weight w̄(x0:k) is known only upto a scaling factor and
I(gk) in equation (2.3.5) would require the knowledge of the actual nor-
malizing factor. This requirement can be avoided as follows. Suppose
p(x0:k|y1:k) ∝ q(x0:k|y1:k). Defining new importance weight w(x0:k) as

w(x0:k) =
q(x0:k|y1:k)

π(x0:k|y1:k)
, (2.3.7)

I(gk) can now be written as

I(gk) =

∫
gk (x0:k)w(x0:k)π (x0:k|y1:k) dx0:k∫

w(x0:k)π (x0:k|y1:k) dx0:k
. (2.3.8)

Accordingly, one can simulate N independent samples (also known as par-

ticles), x
(i)
0:k ∼ π(x0:k|y1:k), for i = 1, . . . , N and the Monte Carlo approxi-
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mation of the integration in equation (2.3.8) can now be given by

ÎN (gk) =
1
N

∑N
i=1 gk(x

(i)
0:k)w(x

(i)
0:k)

1
N

∑N
i=1 w(x

(i)
0:k)

=

N∑

i=1

gk(x
(i)
0:k)w̃

(i)
k , (2.3.9)

where w̃
(i)
k are the normalized importance weights, given by

w̃
(i)
k =

w(x
(i)
0:k)

∑N
i=1 w(x

(i)
0:k)

. (2.3.10)

Asymptotically ÎN converges to I almost surely by the strong law of large
numbers under the following weak assumptions (Geweke (1989)):
Let x0:k ∈ X

k ⊆ R
k. Then

Assumption (1) : The product of the prior density, p(x0:k|y1:k−1), and
the likelihood function, p(yk|x0:k, y1:k−1), is proportional to a proper
probability density function defined on X

k.

Assumption (2) : {x(i)
0:k}∞i=1 is a sequence of i.i.d. random vectors, the

common distribution having a probability distribution function π (x0:k|y1:k).

Assumption (3) : The support of π (x0:k|y1:k) includes X
k.

Assumption (4) : I(gk) exists and is finite.

A central limit theorem with a convergence rate still independent of the
dimension of the integrand can also be obtained under the following addi-
tional assumptions:

Assumption (5) : E[w̃k] < ∞.

Assumption (6) : E[w̃k g2
k (x0:k)] < ∞.
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The integration ÎN (gk) in equation (2.3.9) can be construed to be an
integration of the function gk(x0:k) with respect to the empirical measure
P̂N (dx0:k|y1:k) as

ÎN (gk) =

∫
gk (x0:k) P̂N (dx0:k|y1:k), (2.3.11)

where

P̂N (dx0:k|y1:k) =

N∑

i=1

w̃
(i)
k δ

x
(i)
0:k

(dx0:k), (2.3.12)

is the weighted particle approximation of the posterior p(x0:k|y1:k).

The importance sampling method as described above, is often used
in general Monte Carlo integration methods. However, in its simplest
form, this is not amenable to recursive estimation, as with the arrival of
new measurement, one has to recompute the importance weights over the
entire state sequence. As a result, the computational complexity increases
with time. A strategy to address this problem in the context of sequential
estimation is described next.

2.3.3 Sequential Importance Sampling (SIS)

Suppose at time k − 1, we have a weighted particle approximation of the

posterior p(x0:k−1|y1:k−1) as P̂N (dx0:k−1|y1:k−1) =
∑N

i=1 w̃
(i)
k−1δx

(i)
0:k−1

(dx0:k−1).

With the arrival of a new measurement yk, we wish to approximate p(x0:k|y1:k)
with a new set of samples. If we choose the importance function π(x0:k|y1:k)
such that it admits the importance function π(x0:k−1|y1:k−1) as its marginal
distribution, i.e.

π(x0:k|y1:k) = π(x0:k−1|y1:k−1)π(xk|x0:k−1, y1:k) (2.3.13)

then one can obtain the particles (samples) x
(i)
0:k ∼ π(x0:k|y1:k) by aug-

menting each of the existing particles x
(i)
0:k−1 ∼ π(x0:k−1|y1:k−1) with a

new state x
(i)
k drawn according to π(xk|x0:k−1, y1:k−1). Moreover, using

equation (2.2.6) together with this importance function given by equation
(2.3.13), one can evaluate the (unnormalized) importance weights recur-
sively as

w
(i)
k ∝ w̃

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)

π(x
(i)
k |x(i)

0:k−1, y1:k)
. (2.3.14)
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Ideally the importance function should be the posterior itself (i.e p(x0:k|y1:k)),
but this is the quantity of our interest, which is unknown. It is known that
using importance function of the form as in equation (2.3.13), the variance
of the importance weights can only increase over time (Kong et al. (1994))
and this leads to a so called degeneracy problem, where distribution of the
importance weights become more and more skewed. In practical terms, it
means that after a few iterations, most of the particles will carry very in-
significant weights, whereas most weights will be carried by a few particles.
Consequently, the algorithm fails to represent the posterior distributions
adequately and effectively a significant computational effort is wasted for
updating those particles with very low weights, as their contributions to the
approximation of the posterior is almost negligible (Doucet et al. (2001);
Ristic et al. (2004); Doucet et al. (2000); Cappé et al. (2007)). A suitable
measure of this degeneracy is usually given by the effective sample size
(ESS) Neff introduced in Kong et al. (1994) and defined as follows:

Neff =
1

∑N
i=1(w̃

(i)
k )2

, (2.3.15)

with 1 ≤ Neff ≤ N . A small Neff indicates a severe degeneracy (Ristic et
al. (2004)). This degeneracy phenomenon can (partially) be mitigated by
the introduction of a new step called resampling, which we will describe
next.

2.3.4 Resampling

Resampling step is a key and essential element for successful implemen-
tation of the PF. The intuitive idea behind resampling is to statistically
eliminate samples with low importance weights and replicate samples with
higher importance weights. In formal term, resampling step replaces the

weighted empirical measure P̂N (dx0:k|y1:k) =
∑N

i=1 w̃
(i)
k δ

x
(i)
0:k

(dx0:k) by the

unweighted measure

P̃N (dx0:k|y1:k) =
1

N

N∑

i=1

N
(i)
k δ

x
(i)
0:k

(dx0:k), (2.3.16)

where N
(i)
k is the number of offspring associated to particle x

(i)
0:k (Doucet

et al. (2001)); N
(i)
k is an integer number such that

∑N
i=1 N

(i)
k = N . If

N
(j)
k = 0 then the particle x

(j)
0:k dies. The surviving particles x

(i)
0:k, i.e. those
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particles, for which N
(i)
k > 0, are approximately distributed according

to P (x0:k|y1:k). Different unbiased resampling schemes ( e.g. Systematic
Resampling, Residual Resampling and Multinomial Resampling) have been
proposed in the literature. For a review on their comparative performances,
please refer to the article by Hol et al. (2006).

Although one can reduce the effect of degeneracy through the resam-
pling step, the latter introduces other problems. The particles with high
importance weights are statistically selected many times, leading to a loss
of diversity among the particles. This is known as ’sample impoverish-
ment’ and it can be severe when the process noise is very low (Ristic et al.
(2004)). To address this problem, schemes like MCMC move step (Carlin
et al. (1992)), resample-move algorithm (Gilks and Berzuini (2001)) and
regularization step (Musso et al. (2001)) have been proposed in the lit-
erature. However, we will not discuss them here any further. The other
problem with resampling is that as the particles interact via this resampling
step, parallel implementation of SIS (with resampling) becomes difficult.
Resampling step also introduces some additional variance on the estimate,
but it can be seen to provide stability later (Doucet et al. (2001)). Conse-
quently, it is more sensible in practice to resample only when the effective
sample size (defined in equation (2.3.15)) as a manifestation of degeneracy
falls below a pre specified threshold NThr. From a theoretical point of view,
after resampling step, the simulated trajectories are no longer statistically
independent (Doucet et al. (2000)) and consequently, the convergence re-
sults are much more involved than that of SIS. For more details about the
convergence issues, one may consult Crisan and Doucet (2002), Hu et al.
(2008) and Del Moral (2004).

2.4 A Generic SMC Algorithm

Having discussed about all the necessary ingredients, we are now in a
position to describe a generic particle filter algorithm. This is explained
below:
Recursively over time k = 0, 1, 2, . . .
For i = 1, . . . , N, where N is the total number of particles,

• sample x
(i)
k ∼ π

(
xk|x(i)

0:k−1, y1:k

)
and set x

(i)
0:k ,

(
x

(i)
0:k−1, x

(i)
k

)

• evaluate the corresponding importance weights w
(i)
k according

to (2.3.14)
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• normalized the importance weights w̃
(i)
k =

w
(i)
k∑N

i=1 w
(i)
k

To avoid carrying the trajectories with small normalized importance weights
and to concentrate upon the ones with large weights, the effective sample
size Neff is used to decide resampling.

• If Neff is below a specified threshold NThr, resample from

{x(i)
k }N

i=1 with probabilities {w̃(i)
k }N

i=1 keeping the sample size

still to be N and assign equal weights 1/N.

2.5 Concluding Remarks

Estimating the optimal state of a nonlinear dynamic model sequentially
over time is of paramount importance in different science and engineering
applications. However, except for a few special cases, the closed form so-
lution is not in general available and can only be approximated. Particle
filtering methods have become very popular as a powerful tool to accom-
plish this goal numerically. In these methods, the posterior distribution is
approximated by a cloud of weighted random particles and as new obser-
vation arrives, the cloud propagates over time. In this chapter, we have
provided a basic exposition to the particle filtering algorithm. We have de-
scribed a generic particle filter, typically consisting of three basic building
blocks - (1) generating the samples sequentially, (2) updating the weights
of the corresponding samples using SIS principle and (3) resampling when-
ever necessary to prevent degeneracy. These ingredients are vary modular
in nature and they can be easily implemented.

After describing the working principle of a generic particle filter here,
we are now ready to move on to the next chapter which focuses on the
issues with sequential importance sampling.
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Chapter 3

Gaussian proposal density
using moment matching in
particle filtering methods

3.1 Introduction

Consider the dynamic system as given by equations (2.2.1)-(2.2.2). The
typical statistical problem related to this type of state-space model is to
estimate the unobserved system value xk in some optimal manner from
all the observations y1:k ≡ (y1, y2, . . . , yk), up to time k, or equivalently,
estimate the conditional density (also known as filtered density) p(xk|y1:k).
As discussed in the previous chapters, the closed form solution can not be
obtained in general. However, this posterior can be elegantly approximated
using particle filtering methods.

Particle Filter (PF), which is a class of simulation based sequential
Monte Carlo (SMC) methods, provides the target filter density p(xk|y1:k)
in the form of a cloud of particles (Handschin and Mayne (1969); Akashi
and Kumamoto (1975); Gordon et al. (1993); West (1993); Pitt and Shep-
hard (1999); Doucet et al. (2001); Arulampalam et al. (2002)). The biggest
advantage of the PF is that it can easily adapt to a nonlinearity in the
model and/or non-Gaussian noises. The efficiency of the PF algorithm
depends on the so-called importance function π(·), also often referred to
as the proposal distribution, used to generate the particles. Naturally, the
appropriate selection of this importance function lies at the heart of PF’s
implementation and forms the main issue addressed in this chapter. It has
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been shown by Doucet et al. (2000) that the importance function of the
form π = p(xk|xk−1, yk), is optimal in a certain sense. In practice, how-
ever, there are two major prohibitive drawbacks for using this importance
function. Firstly, drawing samples according to p(xk|xk−1, yk) is, in gen-
eral, difficult. Secondly, it is also difficult to get an analytical expression
which is needed for the weight update.

In this chapter, we propose a Gaussian approximation of p(xk|xk−1, yk)
as the importance function by matching the exact moments up to second
order of the distribution of (xk, yk) conditional on xk−1 (Saha et al. (2009b,
2007, 2006)). Recently, Doucet et al. (2000) and Guo et al. (2005) also
proposed similar importance functions. However, Doucet et al. (2000) use
the linearized approximation of the observation model to calculate the
moments, while Guo et al. (2005) approximate the moments by different
numerical methods such as the Gaussian-Hermite quadrature rule or the
Julier-Uhlmann quadrature rule. Besides the possibility that the use of
exact moments may lead to better approximation of the optimal proposal
distribution, our method has one distinct advantage over the one in Guo et
al. (2005), namely that, it is computationally less demanding. We also note
that, the dynamical systems considered by Doucet et al. (2000) and Guo et
al. (2005) are with additive Gaussian noise processes, whereas our method
would work for more general models, for example, when the Gaussian noise
in the state equation (2.2.1) is not necessarily additive but the observation
model (2.2.2) is a polynomial. For comparison we have also considered
unscented particle filter (van der Merwe et al. (2000)) which, too, works
for general dynamical systems. Our experimental results with additive
Gaussian noise processes show that the overall performance of our proposal
function is better than that of the other proposals, considering the trade
off between the RMSE and the computational load.

The rest of the chapter is organized as follows. In section 3.2 the impor-
tance function is discussed briefly. We describe our proposed importance
function using the exact moments in section 3.3. Construction of other im-
portance functions as proposed by Doucet et al. (2000), Guo et al. (2005)
and van der Merwe et al. (2000) are briefly reviewed in section 3.4. Im-
plementation issues of our proposed method are discussed in section 3.5.
Section 3.6 contains the numerical comparison results of these methods
based on three examples. The first two are with additive Gaussian noise
processes – one with a polynomial (section 3.6.1) and the other with a non-
polynomial (section 3.6.2) observation equation while the third one is with
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non Gaussian noise process (section 3.6.3). In section 3.7, we compare
the different proposal densities in terms of Kullback-Leibler divergence.
Finally, section 3.8 concludes the chapter.

3.2 The importance function in PF

Usually in practice, the importance function is taken to be the transi-

tion density, i.e., π
(
xk

∣∣∣x(i)
0:k−1, y1:k

)
= p

(
xk

∣∣∣x(i)
k−1

)
, because it is easily

available from the model (Arulampalam et al. (2002)). However, it is well
known that particle filter algorithm using this importance function suffers
from the degeneracy problem, that is to say, the variance of the impor-
tance weights can only increase over time. Intuitively, if the measurement
is very informative, a lot of samples are wasted by exploring regions of low
importance. To make the method more effective, importance functions
of the form π = p(xk|xk−1, yk), i.e., the one which incorporates both the
system and observation processes are suggested in (Doucet et al. (2000);
Liu and Chen (1998)). Additionally, it has been shown by Doucet et al.

(2000) that the importance function p
(
xk

∣∣∣x(i)
k−1, yk

)
addresses the degen-

eracy issue by minimizing the variance of the (unnormalized) importance

weight w
(i)
k conditional upon x

(i)
0:k−1 and y1:k. It is, however, very diffi-

cult to get this optimal importance function p (xk |xk−1, yk ), barring a few
special cases. One such case is the celebrated Heston model with jumps
(also known as Bates model (Bates (1996))) for (unobserved) volatility of
a stock price process. The detailed calculation can be found in Appendix
B.

In general, though, as mentioned before, this choice is not practical be-
cause it is neither easy to generate samples from this distribution nor to get
the analytical expression (needed for the weight update equation). In the
following section, we propose an approximation of this as the importance
function.

3.3 Importance function based on exact moment

matching (EMM)

Suppose the system dynamics are given by (2.2.1)–(2.2.2). We further
assume the following.
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Assumption (A) : All the moments of (xk, yk) conditional on xk−1 up to
second order, i.e., E (xk|xk−1), E

(
xk xT

k |xk−1

)
, E (yk|xk−1), E

(
yk yT

k |xk−1

)
,

and E
(
xk yT

k |xk−1

)
are known.

To determine the importance function, to be used in conjunction with the
particle filtering algorithm, we proceed as follows. We approximate the
joint distribution of (xk, yk), conditional on xk−1, by a Gaussian distribu-
tion with matching moments up to the second order. Let the corresponding
mean µ(k) and the covariance Σ(k) be given by

µ(k) =

(
µ

(k)
1

µ
(k)
2

)
and Σ(k) =




Σ
(k)
11 Σ

(k)
12(

Σ
(k)
12

)T

Σ
(k)
22


 . (3.3.1)

Note that µ(k) and Σ(k) can be calculated from the moments which are
assumed to be known from Assumption (A). Subsequently, we take the im-
portance function to be the conditional distribution of xk, given (xk−1, yk),
derived from the approximated Gaussian distribution above. In other

words, we take π(xk|x(i)
0:k−1, y0:k) ∼ N (mk,Σk), where

mk = µ
(k)
1 + Σ

(k)
12

[
Σ

(k)
22

]−1
(yk − µ

(k)
2 ) (3.3.2)

Σk = Σ
(k)
11 − Σ

(k)
12

[
Σ

(k)
22

]−1 (
Σ

(k)
12

)T

. (3.3.3)

We note here that a sufficient condition for Assumption (A) to hold is :

Condition 1 : Both E (yk|xk) and E
(
yk yT

k |xk

)
are polynomials in xk of

degree at most m and all conditional moments of xk, given xk−1, are
known up to order m, where m is an arbitrary positive integer.

In the special case when the noise processes in (2.2.1)–(2.2.2) are ad-
ditive Gaussian, suppose the system dynamics are given by

xk = f(xk−1) + wk, wk ∼ N (0, Q) (3.3.4)

yk = h(xk) + vk, vk ∼ N (0, R), k = 1, 2, . . . (3.3.5)

then the conditional moments of all order of xk given xk−1 are known.
If, in addition, h(·) in (3.3.5) is a polynomial, then Condition 1 would be
satisfied and hence Assumption (A) would hold. The precise formulas for
the quantities can be found in section 3.5.
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3.4 Other Gaussian importance functions

There are other Gaussian importance functions proposed in the literature.
We mention three of them here. The first two are based on the Gaussian
approximation of the optimal importance function p (xk|xk−1, yk) which are
similar in idea to EMM, but the moments are approximated in different
ways. The third one, on the other hand, uses a bank of unscented Kalman
filters to obtain the proposal density.

3.4.1 Importance function by linearization (LIN)

In an earlier paper, Doucet et al. (2000) consider a dynamical system
with additive Gaussian noise, given by (3.3.4)–(3.3.5). Observing that the
optimal importance function p (xk|xk−1, yk) is Gaussian when h(·) in the
observation model (3.3.5) is linear, the authors linearize the observation
equation (3.3.5) to obtain

yk ≈ h(f(xk−1)) + Ck(xk − f(xk−1)) + vk (3.4.1)

where Ck = ∂h
∂xk

(f(xk−1)). Subsequently, they use the corresponding Gaus-

sian distribution as the importance function, i.e., π
(
xk|x(i)

0:k−1, y1:k

)
∼

N (mk, Vk), where

V −1
k = Q−1 + CT

k R−1Ck (3.4.2)

mk = VkQ
−1f(xk−1) +

VkC
T
k R−1 (yk − h(f(xk−1)) + Ckf(xk−1)) . (3.4.3)

This essentially reduces to approximating the conditional distribution of
(xk, yk), given xk−1, by the Gaussian distribution with mean vector µ∗ and
covariance matrix Σ∗ given by

µ∗ =

(
f(xk−1)

h(f(xk−1))

)
and Σ∗ =

(
Q QCT

k

CkQ CkQCT
k + R

)
. (3.4.4)

See Appendix A for details.

3.4.2 Numerically approximated moment matching

In a more recent article, Guo et al. (2005) consider the same dynami-
cal system given by (3.3.4)–(3.3.5). The importance function proposed
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by them is also in effect derived from a Gaussian approximation of the
joint distribution of (xk, yk) conditional on xk−1. Guo et al. (2005), how-
ever, approximate the moments in (3.3.1) by various numerical techniques,
such as the Gauss-Hermite quadrature (GHQ) rule and the Julier-Uhlmann
quadrature (JUQ) rule. For example, according to GHQ

∫ ∞

−∞
g(x)

1

(2π)
1
2

e−|x|2dx =

m∑

i=1

ωig(xi),

where the number (m) and the location (xi’s) of the abscissas and corre-
sponding optimal weights (ωi’s) can be chosen beforehand (Golub (1973)).
For instance, when m = 3 the xi’s and ωi’s are given by

xi 0 ±
√

3

ωi 2/3 1/6
.

According to JUQ (see, e.g., Julier et al. (2000)) an n-dimensional standard
Gaussian distribution with covariance e is approximated by a discrete dis-
tribution taking values in {z1, . . . , z2n+1} with corresponding probabilities
P (zk) given by

zk = (
√

(n + κ)e)k P (zk) =
1

2(n + κ)
if 1≤ k ≤ n,

zk = −zk−n P (zk) =
1

2(n + κ)
if n + 1≤ k ≤ 2n,

zk = 0 P (zk) =
2κ

2(n + κ)
if k= 2n + 1

where κ is the scaling parameter and (
√

(n + κ)e)k is the kth row or column
of the matrix square root of (n + κ)e. Subsequently,

∫
g(x)

1

(2π)
n
2

e−
|x|2

2 dx =

2n+1∑

k=1

g(zk)P (zk).

We refer the reader to the original article for the details.

3.4.3 Unscented particle filter (UPF)

The unscented particle filter algorithm of van der Merwe et al. (2000)
is suitable for general dynamical systems given by (2.2.1)–(2.2.2). The
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main idea here is that the proposal density is taken as the output of a
separately running unscented Kalman filter (UKF). In this method, with
new observation yk, a separate unscented Kalman filter is propagated for
each particle, to generate the Gaussian proposal density as

π(x
(i)
k |x(i)

0:k−1, y1:k) = pUPF (x
(i)
k |x(i)

0:k−1y1:k) = N (x̄
(i)
k , P̄

(i)
k ).

For exact expressions of x̄
(i)
k and P̄

(i)
k , please see van der Merwe et al.

(2000). Next, one samples the ith particle from this density. It is worth-
while to note that unlike the extended Kalman filter, which approximates
the models, the UKF works directly on the nonlinear models based on the
unscented transformation (UT) method. Using the UT, one can calcu-
late the mean and variance of a nonlinearly transformed random vector
as follows: Let X be a n dimensional random vector with mean x̄ and
covariance P . Suppose, we want to calculate the mean and covariance of
Y = f(X). The UT chooses a set of 2n + 1 deterministic weighted sam-
ples (Wk, χk)

2n+1
k=1 , also known as sigma points, such that they completely

capture the true mean and covariance of X. These weighted samples are
given by (van der Merwe et al. (2000))

χk = x̄ + (
√

(n + κ)P )k Wk =
1

2(n + κ)
if 1≤ k ≤ n,

χk = x̄ − (
√

(n + κ)P )k Wk =
1

2(n + κ)
if n + 1≤ k ≤ 2n,

χk = x̄ Wk =
2κ

2(n + κ)
if k= 2n + 1

where κ is the scaling parameter and (
√

(n + κ)P )k is the kth row or
column of the matrix square root of (n+κ)P . Wk is the weight associated
with the kth point such that

∑2n+1
k=1 Wk = 1. The mean and variance of Y

are then approximated as

ȳ =

2n+1∑

k=1

Wkf(χk)

Py =

2n+1∑

k=1

Wk(f(χk) − ȳ)(f(χk) − ȳ)T .

These estimates are accurate to the second order of the Taylor series ex-
pansion of f(·). For details, please refer to Julier et al. (2000).
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3.5 Implementation of the EMM

Clearly, the EMM as described in section 3.3 can be implemented if the
Assumption (A) holds. A proper classification of models for which As-
sumption (A) holds is not very easy. However, as mentioned in section 3.3,
if the dynamical system is given by (3.3.4)–(3.3.5) with h(·) in equation
(3.3.5) a polynomial function, then EMM can be implemented. This is
shown below:

The conditional moments of xk given xk−1 can be derived as follows.

E (xm
k |xk−1) =

m∑

r=0

(
m

r

)
[f(xk−1)]

r E(wm−r
k ) =

m∑

r=0

(
m

r

)
[f(xk−1)]

r µm−r,

(3.5.1)
where µj is the j-th (raw) moment of the N (0, Q) distribution, given by

µ2k+1 = 0 and µ2k =
(2k)!

2k k!
Qk, for k = 0, 1, 2, . . . . (3.5.2)

When h(x) is a polynomial of the form, h(x) =
∑n

r=0 ar xr, both E (yk|xk)
and E

(
yk yT

k |xk

)
are polynomials in xk, thus satisfying Condition 1. Sub-

sequently, we have

E (yk|xk−1) =
n∑

m=0

am E (xm
k |xk−1)

=

n∑

m=0

m∑

r=0

am

(
m

r

)
[f(xk−1)]

r µm−r (3.5.3)

E
(
xk yT

k |xk−1

)
=

n∑

m=0

am E
(
xm+1

k |xk−1

)

=
n∑

m=0

m+1∑

r=0

am

(
m + 1

r

)
[f(xk−1)]

r µm+1−r (3.5.4)

E
(
yk yT

k |xk−1

)
=

n∑

m=0

n∑

l=0

am al E
(
xm+l

k |xk−1

)

=
n∑

m=0

n∑

l=0

m+l∑

r=0

am al

(
m + l

r

)
×

× [f(xk−1)]
r µm+l−r . (3.5.5)
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Then equations (3.5.1)–(3.5.5) ensure the validity of Assumption (A). In
this context, it is worthwhile to note that the observation model is not
always given explicitly. Instead, it is given as a high fidelity algorithmic
code such as in Finite element method (FEM) and Computational fluid
dynamics (CFD). Simulations using these codes, in general, require huge
computational time. To reduce the computational burden often a so called
“Surrogate model” is used. “Response Surface Methodology” (RSM) is one
such popular technique in which the true observation model (given by the
algorithmic code) is approximated in some optimal manner by a lower order
polynomial in state (Giunta et al. (1995); Kalnins et al. (2006); Koehler
and Owen (1996)). In such cases, EMM can be readily applied.

When the exact values of the quantities in equation (3.3.1) cannot be
calculated, we propose to approximate the observation equation by one
of polynomial form and implement the EMM to derive the importance
function. For instance, consider a real-valued dynamical system given by
(3.3.4)–(3.3.5). We assume further that the function h(·) is n times differ-
entiable. We approximate h(·) locally by its n-th degree Taylor polynomial
around x∗

k = f(xk−1) to get the following observation equation.

yk =
n∑

m=0

am (xk − x∗
k)

m + vk with am =
1

m!

(
∂mh (xk)

∂xm
k

)

xk=x∗
k

.

(3.5.6)
Then the quantities in (3.3.1) can be approximated by the corresponding
quantities for the dynamical system governed by equations (3.3.4) and
(3.5.6). Subsequently noting that the conditional distribution of (xk − x∗

k)
given xk−1 is N (0, Q), we can calculate the following moments.

E (yk|xk−1) =

n∑

m=0

am E [(xk − x∗
k)

m|xk−1]

=
n∑

m=0

am µm, (3.5.7)

E
(
yk yT

k |xk−1

)
=

n∑

m=0

n∑

l=0

am al E
[
(xk − x∗

k)
m+l|xk−1

]

=
n∑

m=0

n∑

l=0

am al µm+l, (3.5.8)
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E
(
xk yT

k |xk−1

)
=

n∑

m=0

am E [xk(xk − x∗
k)

m|xk−1]

=

n∑

m=0

am E
[
(xk − x∗

k)
m+1|xk−1

]
+

+ x∗
k

n∑

m=0

am E [(xk − x∗
k)

m|xk−1]

=

n∑

m=0

am µm+1 + x∗
k

n∑

m=0

am µm, (3.5.9)

where µj ’s are given by (3.5.2). A pseudo algorithm for non-polynomial
observation model can be given as follows.

Algorithm

• Set the degree (n) of Taylor polynomial in (3.5.6)

• Set the threshold sample size, Nthr

At time step k

• Compute all coefficients of polynomial using (3.5.6)

• Compute all the moments in (3.3.1) using (3.5.7)-(3.5.9)

together with (3.5.1)-(3.5.2)

• Construct Gaussian proposal density

π (xk|x0:k−1, y1:k) ∼ N (mk,Σk) from (3.3.2) - (3.3.3).

• For i = 1, ..., N, sample x̃
(i)
k ∼ π

(
xk|x(i)

0:k−1, y1:k

)
and

set x̃
(i)
0:k ,

(
x

(i)
0:k−1, x̃

(i)
k

)
.

• For i = 1, ..., N, assign the importance weights upto

a normalizing constant

w̃
(i)
k = w

(i)
k−1

p
(
yk|x̃(i)

k

)
p
(
x̃

(i)
k |x̃(i)

k−1

)

π
(
x̃

(i)
k |x̃(i)

0:k−1, y1:k

)
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• For i = 1, ..., N, normalize the importance weights

w
(i)
k =

w̃
(i)
k∑N

i=1 w̃
(i)
k

• Evaluate effective sample size

Neff = 1/

N∑

i=1

(
w

(i)
k

)2

• If Neff > Nthr, resample.

Note that the approach proposed above extends the methodology used
by Doucet et al. (2000) where the observation equation is approximated
by the first degree Taylor polynomial, whereas we consider polynomials
of higher degree. It is also worthwhile to note the difference between the
approach followed by Guo et al. (2005) and the one proposed above. Guo
et al. (2005) work with the given nonlinear model and during setting up
of the Gaussian importance density, they approximate the moments. We,
on the other hand, first approximate the observation equation with a n-th
degree polynomial and further derive the Gaussian importance density
using the exact moments (based on the approximated polynomial model).
In the following section (section 3.6), we present some illustrative numerical
examples.

3.6 Numerical simulation results

In this section, we first consider two examples – one with a polynomial ob-
servation model and the other with a non-polynomial model – and compare
the filtered estimates obtained by different methods. In both examples we
consider additive Gaussian noise processes. Finally, we consider a model
with non Gaussian process noise and compare the filter estimates as ob-
tained by EMM and UPF.
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3.6.1 Polynomial observation model

As in Doucet et al. (2000) we consider the system dynamics to be given
by (3.3.4)–(3.3.5) with

f(xk−1) =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8cos(1.2k) (3.6.1)

h(xk) =
x2

k

20
. (3.6.2)

In our simulations, we set Q = 10 and R = 1 and starting with
x0 ∼ N (0, 5), generate a time series data of length 100. Given only the
noisy observations yk, the particle filter algorithm is performed with the
importance functions described in section 3.4 (LIN, GHQ, JUQ, UPF)
and the new one (EMM) proposed in section 3.3. We estimate the state
sequence xk, k = 1, 2, . . . , 100, with all the different methods mentioned
above.

Note that, in this case, the differences in the moments used in EMM
and LIN can be clearly seen. The moments used in EMM, as given in
(3.3.1), are

µ(k) =

(
f(xk−1)

f2(xk−1)
20 + Q

20

)
and Σ(k) =

(
Q

f(xk−1)Q
10

f(xk−1)Q
10

f2(xk−1)Q
100 + Q2

200 + R

)
,

while the moments used in LIN, as given in (3.4.4), are

µ∗ =

(
f(xk−1)
f2(xk−1)

20

)
and Σ∗ =

(
Q

f(xk−1)Q
10

f(xk−1)Q
10

f2(xk−1)Q
100 + R

)
.

For GHQ, we use the 5 point quadrature rule and for JUQ, the three
(n = 1) sigma points were calculated using κ = 2. For UPF, the parameters
are taken to be the same as that of van der Merwe et al. (2000) with
α = 1, β = 0, κ = 2 and P0 = 1. We use, however, systematic resampling
scheme while resampling, whereas van der Merwe et al. (2000) use residual
resampling scheme.

For all methods, the initial distribution p(x0) is taken to be the true
distribution, N (0, 5) and resampling was done when the effective sample
size became less than one-third of the original sample size N . For each
method, we first calculate the root mean squared error (RMSE) over M =
100 runs for each time point k and then the average (over time) RMSE,
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N LIN GHQ JUQ UPF EMM

RMSE 4.7356 4.5724 4.5647 4.9552 4.6179
100 CPU 0.0255 0.0677 0.0617 1.9730 0.0403

NRS 36.64 31.43 31.35 46.48 31.39

RMSE 4.6715 4.4628 4.4989 4.5430 4.4838
250 CPU 0.0394 0.1855 0.1684 5.0514 0.0770

NRS 36.26 32.05 32.29 46.38 32.18

RMSE 4.4923 4.4299 4.4567 4.4766 4.4406
500 CPU 0.0650 0.5283 0.5008 10.0609 0.1423

NRS 38.23 32.55 32.43 46.49 32.67

RMSE 4.4310 4.4211 4.4122 4.4491 4.4162
1000 CPU 0.1352 1.6559 1.6128 20.1678 0.2892

NRS 39.42 33.29 32.92 46.33 33.23

Table 3.1: Comparison of the performance of different proposal distribu-
tions with a polynomial observation model

given by 1
100

∑100
k=1

(
1
M

∑M
j=1(x̂

j
k − xj

k)
2
) 1

2
. Here xj

k is the true (simulated)

state for time k in the j-th run and x̂j
k is the corresponding (point) estimate

using a PF method.

Each of these methods is implemented with different Monte Carlo sam-
ple sizes N = 100, 250, 500 and 1000. In Table 3.1 the average RMSE val-
ues are presented. Also reported are the average (over the 100 runs) CPU
time, in seconds, to complete a run and the average number of resampling
steps (NRS) out of the 100 time steps.

First of all, we see from the table that, as expected, the performances
(as measured by RMSE) of all the methods become similar as sample size
N increases. This is in conformity with the fact that for any proposal
distribution the particle filter converges to the true posterior as N → ∞.
The UPF seems to have a considerably higher computational load than the
other methods. This can be explained by the fact that one needs to run
the unscented Kalman filter for each particle (at each step) to calculate
the proposal. Performances of GHQ, JUQ and EMM are more or less
similar (which is better than LIN), but the time taken to arrive at the
estimate is less for EMM than those for GHQ and JUQ. It appears that
the numbers of resampling steps are almost the same for GHQ, JUQ and
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EMM, which is slightly better than LIN. So, the extra computational load
for GHQ and JUQ relative to our EMM method can be construed as a
result of computing the moments numerically. Thus one can conclude that
the EMM method is more efficient compared to the other methods as it
is computationally less demanding in arriving at the comparable level of
efficiency.

3.6.2 Non-polynomial observation model

Let us consider the following model

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8cos(1.2k) + wk, wk ∼ N (0, 10)(3.6.3)

yk = tan−1(xk) + vk, vk ∼ N (0, 1), k = 1, 2, . . . (3.6.4)

Once again, a time series data of length 100 was simulated starting with
x0 ∼ N (0, 5) and the different particle filters were applied on the observa-
tion yk. Here the exact moments given in (3.3.1) are unknown. For EMM
we have considered a 2nd degree Taylor polynomial, as described in section
3.5. The other setup are as in the previous example in section 3.6.1. The
performances of different methods are presented in Table 3.2.

Again, comparing the RMSE’s we observe that the performances of
GHQ, JUQ, UPF and EMM are fairly similar, and they are all better than
LIN. But when CPU times are compared, UPF is the worst performer.
A very close look reveals that GHQ and JUQ may produce slightly lower
RMSE compared to EMM. However, this relative gain is achieved at the
expense of high computational load. Thus, considering the trade off be-
tween the RMSE and the computational cost, EMM appears to provide a
practical and efficient proposal density.

3.6.3 Model with non Gaussian process noise

Here we consider the following model as given in van der Merwe et al.
(2000):

xk+1 = 1 + sin(ωπk) + φ1xk + wk (3.6.5)

yk =

{
φ2x

2
k + vk, k ≤ 30

φ3xk − 2 + vk k > 30
(3.6.6)
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N LIN GHQ JUQ UPF EMM

RMSE 4.1643 4.0875 4.0977 4.1051 4.0936
100 CPU 0.0227 0.0686 0.0711 2.0225 0.0567

NRS 18.13 11.88 12.31 28.76 17.13

RMSE 4.1114 4.0592 4.0636 4.0630 4.0669
250 CPU 0.0359 0.1977 0.1963 5.1927 0.0752

NRS 20.79 12.04 12.51 28.70 18.10

RMSE 4.1027 4.0416 4.0509 4.0563 4.0524
500 CPU 0.0591 0.5930 0.5941 10.3734 0.1102

NRS 23.40 12.29 12.58 28.61 18.78

RMSE 4.0745 4.0415 4.0426 4.0483 4.0423
1000 CPU 0.1275 1.6741 1.6936 20.9481 0.2188

NRS 25.45 12.35 12.64 28.82 19.69

Table 3.2: Comparison of the performance of different proposal distribu-
tions with a non-polynomial observation model

where the process noise wk ∼ Gamma(3, 2), ω = 0.04 and φ1 = 0.5. The
observation noise is taken to be vk ∼ N (0, 10−1), φ2 = 0.2 and φ3 = 0.5. A
time series data of length 60 was simulated starting with initial distribution
p(x0) ∼ N (0, 5). Note that because of the presence of non-Gaussian noise,
the methods of LIN, GHQ, JUQ would not work. UPF and EMM methods,
however, can be used with this model. So in this example, we compare the
performance of EMM to that of UPF. For UPF, the parameters are taken to
be the same as that of van der Merwe et al. (2000) with α = 1, β = 0, κ = 2
and P0 = 1 but we use systematic resampling scheme, whereas van der
Merwe et al. (2000) use residual resampling scheme. For all methods, the
initial distribution p(x0) is taken to be N (0, 5) and resampling was done
when the effective sample size fell below one-third of the original sample
size N . Their performances are presented in Table 3.3.

Here also the performances of UPF and EMM are fairly similar, but
when CPU times are compared, EMM performs much better. Thus, com-
paring the overall trade off between RMSE and CPU times, we observe
that EMM is more efficient while also relatively easy to implement.
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N UPF EMM

RMSE 0.3429 0.3409
200 CPU 2.79 0.0488

NRS 8.05 7.60

RMSE 0.3431 0.3449
500 CPU 6.2536 0.1100

NRS 8.37 8.03

Table 3.3: Comparison of the performance of UPF and EMM for a model
with non Gaussian process noise

3.7 Comparing different proposals using Kullback-
Leibler divergence

It is very common to use RMSE for comparing performances of different
particle filtering methods. We have also done the same in the previous sec-
tion to compare different proposal distributions. RMSE compares the true
(synthetic) value of xk to the mean of the estimated posterior density. One
common criticism against the use of RMSE in particle filtering context is
that it compares only one aspect (mean) of the estimated distribution with
the true one. Thus it neglects all other information which are otherwise
available from the posterior represented by the weighted particle cloud.
After all, one may have two very differently shaped (estimated) posterior
densities with same mean and thus leading to same RMSE value. So for
fair comparison, one should compare the complete densities– the true pos-
terior against the estimated posterior. For this purpose, we envisage here
the Kullback-Leibler divergence (KLD) measure.

3.7.1 Kullback-Leibler divergence

The KLD is a measure of the difference between two probability distri-
bution (density) functions. The KLD between two probability density
functions p(x) and q(x) is given as

D(p||q) =

∫
p(x) log

p(x)

q(x)
dx . (3.7.1)
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If p is not absolutely continuous with respect to q then

D(p||q) = +∞ . (3.7.2)

It is not a proper mathematical measure, since it is not symmetric in
its arguments and does not obey the triangle property. Nevertheless, it is
widely accepted as a standard measure in Information Theory (Cover and
Thomas (1991); Gray (1990)).

3.7.2 Implementation issues

When comparing different PF schemes, one can in principle, use KLD to
measure the difference between the true posterior pdf and the estimate
obtained by the particular PF scheme. Smaller KLD implies that the
estimated posterior obtained by the scheme is closer to the true posterior
and hence, the scheme is more appropriate in terms of accuracy. Though
the idea is very simple, in practice, the implementation is limited, mainly
due to the following reasons:

(a) true posterior pdf of the dynamic state can hardly be obtained ana-
lytically.

(b) the filter density is not readily available from particle filter output.

One remedy for (a) could be to run a PF with a very large number of
samples and take the output as the true posterior. After all, the PF con-
verges to the true value as the sample size increases to infinity. Regarding
(b), the common practice to obtain density from a weighted particle cloud
is to use the kernel density estimation method, where one has to spec-
ify the bandwidth of the selected kernel. We note here though that this
selection is, in general, not trivial. We use the Gaussian kernel density
method, where a Gaussian kernel is fitted to each individual particle with
bandwidth selected by the ’Rule of Thumb’ as given in Silverman (1986).
Now, having obtained the densities (p(x) and q(x)) in this fashion, one can
compute the KLD between them as follows:

D(p||q) =
∫

p(x) log p(x)
q(x)dx

= Ep[log(p(X))] − Ep[log(q(X))] ,
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where X ∼ p(·) and Ep is the expectation operator with respect to the
density p(x). Since it is difficult to get this KL divergence analytically, we
resort to a Monte Carlo integration technique where one first draws Ns

samples from p(x) and then evaluates the densities p(x) and q(x) at those
samples. One can then replace the expected log likelihood by the sample
average of the log likelihood such that

D(p||q) = Ep[log(p(X))] − Ep[log(q(X))]

≃
Ns∑
j=1

log(p(xj)) · Wj −
Ns∑
j=1

log(q(xj)) · Wj

where Wj is the weight associated with particle xj drawn from p(x).

3.7.3 Numerical simulation results

We reconsider the same set up of section 3.6 with system dynamics given
by (3.6.1)–(3.6.2). Since the posterior for ’true state’ is not analytically
available here, we approximate this by the output of a particle filter (with
state transition density as proposal) using 20,000 particles. For estimat-
ing the posterior density, we use the Gaussian kernel density method. For
this purpose, we have used a publicly available Matlab code (Kernel Den-
sity Estimation Toolbox for MATLAB (R13)), accessible from the website
http://www.ics.uci.edu/∼ihler, (Ihler (2005)). We compare the perfor-
mance of Gauss Hermite quadrature (GHQ), Julian Ullman quadrature
(JUQ) and exact moment method (EMM) by averaging the KLD for each
time step over 10 runs. To calculate the KLD for each time step, we
draw 1000 samples from the posterior pdf obtained by each method and
evaluated the likelihood as mentioned above.

While evaluating this KLD, we encountered numerical instability at
some instants. A careful inspection revealed that the kernel density es-
timator we have used can not properly model the tail distribution. For
example, very small values of q(xj), due to modeling limitations of the es-
timator, results in −∞ for Ep[log(q(x))]. To avoid this numerical problem,
one ad hoc solution is to add noise to the density q so that it does not
truncate abruptly. In other words, to replace q by q∗ given by

q∗ = (1 − ǫ)q + ǫZ;

where Z ∼ N (m,Σ) (i.e. the Gaussian noise with mean m and variance
Σ). For the example considered above, we took ǫ = 0.005, m = 0 and
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PF scheme KL distance

JUQ 0.8569

GHQ 0.8672

EMM 0.8161

Table 3.4: performance of different proposal densities in terms of KLD

σ = 100. The KLD averaged over the time for JUQ, GHQ and EMM is
given in Table 3.4. We can see that though EMM is slightly better here
(smaller KLD), they perform almost equally.

3.8 Concluding Remarks

In this chapter, a new importance function has been proposed which is
based on the Gaussian approximation of the conditional distribution of
(xk, yk), given xk−1, with the first two moments matched exactly to those of
the true conditional distribution. To use the proposed method, one needs
to know the moments of the system dynamics up to the second order.
A specific case in which this is satisfied is when the noise processes are
additive Gaussian and the observation equation is polynomial. When the
exact moments are not known but the noise processes are additive Gaussian
and the observation model is smooth, we use a polynomial approximation
of the observation model to derive the importance function. With the
help of numerical examples, it has been shown that the proposed EMM
method provides a more practical and efficient proposal density considering
the trade off between the performance (as measured by RMSE) and the
computational load.

Additionally, an effort has been made to compare the performances
of the different proposals in terms of Kullback-Leibler divergence. Since
one can not get the pointwise density value from the cloud representation
directly, we use the (Gaussian) kernel density estimation for this purpose.
Using a ’rule of thumb’ (Silverman (1986)) for bandwidth selection, the
numerical results do not show any difference in the performances of JUQ,
GHQ and EMM.
It is however, known that the selection of bandwidth is an important issue
in kernel density estimation. While the choice is not at all obvious, it affects
the estimate heavily. Furthermore, the kernel density estimation method
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is itself computationally very expensive. These limitations in the context
of particle filter have motivated us for an alternative density estimation
method, which we will explore in the next chapter.

40



Chapter 4

The Monte Carlo marginal
MAP estimator for general
state space models

4.1 Introduction

The dynamic estimation problem concerned with estimating the unknown
state given a set of measurements is a cornerstone for many practical prob-
lems. The complete solution is given by the posterior probability density
function, which reflects all knowledge about the current state. From our
previous chapters, we recapitulate that for a general nonlinear dynamic
system, this posterior is analytically intractable, but can be successfully
approximated using PF methods. In this method, the posterior is ap-
proximated by a cloud of N weighted particles, whose empirical measure
closely approximates the true posterior for large N (Doucet et al. (2000);
Arulampalam et al. (2002); Liu and Chen (1998)). For inference purposes,
however, instead of the whole posterior, often a single point estimate is
more convenient. One such commonly used point estimate is the mini-
mum mean square error (MMSE) estimate, which happens to be the mean
of the posterior density. In PF set up, this can be easily obtained by taking
the weighted average of the particles.

Nonetheless, the MMSE estimate has some apparent disadvantages.
For example, when the posterior is multimodal, the MMSE estimate may
be located in a region (between the modes) where the posterior can have
a very small value and thus, producing an unreasonable estimate. In such
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a scenario, another point estimate, namely, the maximum a posteriori
(MAP) estimate, which picks the state that maximizes the posterior, is
more relevant. The situation is described in Figure 4.1. In many real life
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Figure 4.1: Comparison of MMSE and MAP estimates

applications multi modality exhibits itself in a natural manner. Terrain
aided navigation is one such example. In this application, the a posteriori
filtering distribution is defined in terms of the position and velocity of an
airplane. The measurements are the terrain heights obtained by taking the
difference between the measured absolute altitude (by means of a Inertial
Navigation System) and the distance measure to ground (as obtained from
Radar Altimeter). This in turn, is compared to the terrain pattern stored
in a digital map. However, if the digital map includes different regions
which have similar terrain patterns in altitude, a given terrain height can
be found at many different positions. This would lead to the multimodal-
ity of the posterior. See Nordlund (2008) (pages 14-15) for more details.
A snapshot of a particle filter based terrain navigation application in ac-
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tion is provided in Figure 4.2. Here, the true trajectory (position) and the
corresponding mean estimates as obtained from the particle filter output
are shown in green and magenta lines respectively. In this figure, the par-
ticle clouds (blue) for the current time step are also shown, which clearly
indicate the multimodality of the posterior. Multi modality also appears

Figure 4.2: Terrain navigation example

in target tracking problems, for example due to data association problems,
multiple models of target dynamics (Bar-Shalom and Li (1995); Blom et
al. (2008)) and the mixed labeling problem in multiple target tracking
(Boers and Driessen (2007); Boers et al. (2008a)). For such applications,
extracting the exact object location is very crucial for subsequent strategic
decisions and inference purposes. However, the popular MMSE based esti-
mate may potentially lead to a situation where the estimates are far from
the actual target positions. This problem is especially apparent in joint
multi-target particle filters, see e.g. Boers et al. (2008a). An illustration
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of this is provided in Figure 4.3, showing two targets in a binary sensor
network. See Boers et al. (2008b) for more modeling details.

Figure 4.3: Two targets in binary sensor network example

In the example in Figure 4.3 the two targets initially started out well
separated, then they move toward each other, remain close to each other
for quite some time, before separating again. Moreover, while together,
they are also close in terms of the related sensor resolutions. The tra-
jectories of the targets are shown in black lines. The results shown for
the current time step are the particle clouds for the two targets (in red
and green), the corresponding MMSE estimates (the black triangles) and
the true positions of both the targets (the black circles), which are well
separated after passing each other as well as the MAP estimates (light
blue triangles). We see that after the separation, the two targets cannot
be distinguished by the filter (the red and the green clouds are mixed).
In this situation, the a posteriori probability density is called completely
mixed, see Boers et al. (2008a). Here, the MMSE estimates, which end
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up somewhere between the particle clouds, are obviously misleading as
both estimates are far away from the actual target positions. The MAP
estimates are, on the other hand, much closer to the true target positions.

The examples presented in this section are a motivation for using the
MAP estimate instead of the MMSE estimate, at least in certain applica-
tions. The rest of the chapter is organized as follows. Following a brief
mathematical description of the problem in section 4.2, we will describe
two approaches to calculate the filter MAP estimates, based on a running
particle filter in section 4.3. Subsequently in section 4.4, We will compare
these two MAP estimates both in terms of computational load and per-
formance. There after, we discuss the effect of continuous optimization to
extract the filter MAP in section 4.5. In section 4.6, the tweaking of par-
ticle populations in constructing the predictive density is studied. Finally,
in section 4.7, we extend the MAP estimator to the marginal smoother,
which is then applied to estimate the unknown initial state of a dynamic
system. For numerical studies, in this chapter, we consider the following
two models:

(A) Linear model

xk = αxk−1 + wk, wk ∼ N(0, 1) (4.1.1)

yk = xk + vk, vk ∼ N (0, 0.01), k = 1, 2, . . . . (4.1.2)

where α is known and the initial distribution is p(x0) ∼ N (0, 2).

(B) Nonlinear model

xk =
xk−1

2
+

25xk−1

1 + x2
k−1

+ 8cos(1.2k) + wk, wk ∼ N (0, 10)(4.1.3)

yk =
x2

k

20
+ vk, vk ∼ N(0, 1), k = 1, 2, . . . . (4.1.4)

with the initial distribution p(x0) ∼ N (0, 5).

4.2 Problem Description

We reconsider the state-space model as given in (2.2.1)–(2.2.2). The prob-
lem here is to estimate sequentially the current state xk given all the ob-
servations y1:n ≡ (y1, y2, . . . , yn), k ≤ n. In this chapter, we will be
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concerned with the MAP estimate or equivalently, to estimate the value
of xk that maximizes the posterior density p(xk|y1:n). This can be stated
mathematically as

xMAP
k|n = arg max

xk

p(xk|y1:n). (4.2.1)

For k = n, this is known as filter MAP whereas, for k < n, this is called
smoothed marginal MAP.

4.3 Filter MAP estimate for a general nonlinear
dynamic system

Estimating the MAP involves maximization over the posterior density,
which is not readily available either analytically or from the approxima-
tion such as particle filter. In the literature, particle with the maximum
weight is often taken as the MAP estimate (Zhou et al. (2004); Candy
(2007); Boers and Driessen (2003)). But, recently it has been shown that
the particle with the highest weight does not necessarily represent the most
probable state estimate and can actually be far from true MAP (Driessen
and Boers (2008a); Cappé et al. (2007)). Thus, this estimator is not really
a fair approximation of the true MAP. Naturally, the crux of the problem
lies in constructing the posterior density from the weighted cloud repre-
sentation of the distribution. We have encountered the same problem in
the previous chapter as well when estimating the Kullback-Leibler diver-
gence (section 3.7). As is known, one classic approach is the kernel based
method where a kernel is fitted around each particle to approximate the
posterior density (Silverman (1986)). This method requires a choice of
kernel bandwidth which is not obvious and the method is computationally
demanding, which restricts its use in many practical applications, espe-
cially those which are online in nature. Moreover, it is worth noticing that
the kernel smoothing also increases the variance of the distribution with a
value equal to the kernel bandwidth, which is its another drawback.

Recently, Driessen and Boers (2008a,b) have proposed a new scheme
for computing the MAP of the filter distribution, directly from the output
of a running particle filter. This method thus avoids the need of band-
width selection associated with the kernel based method. Furthermore,
the approximate MAP estimates obtained through this method are shown
to converge to the true MAP estimates. The method is briefly explained
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in section 4.3.1. In section 4.3.2, we describe another method which also
provides an estimate of xk (current state) using MAP.

4.3.1 Particle based filter MAP estimate (pf-MAP)

The method has originally been described by Driessen and Boers (2008a,b).
The main advantage of this method is that it can approximate the poste-
rior density not only at particles forming the clouds but at any point. To
elucidate the method, consider the same dynamic system as given in equa-
tions (2.2.1)-(2.2.2). The MAP estimate of the filtering density at time k
is then given by

xMAP
k|k = arg max

xk

p(xk|y1:k). (4.3.1)

For a general nonlinear model, analytical expression for the filtering density
p(xk|y1:k) can hardly be obtained in closed form. However, using particle
filtering technique, one can approximate this posterior distribution by a
cloud of N weighted particles as

P̂ (dxk|y1:k) ≃
N∑

j=1

w
(j)
k δ

x
(j)
k

(dxk). (4.3.2)

Now using the Bayes’ rule, the posterior (filtering) density in equation
(4.3.1) can be written as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
. (4.3.3)

Observing that the denominator is independent of xk, one can write

p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1). (4.3.4)

The MAP estimate can thus be expressed as

xMAP
k = arg max

xk

p(yk|xk)p(xk|y1:k−1). (4.3.5)

Since the conditional likelihood p(yk|xk) is known for each xk, the main is-
sue for evaluating MAP is the calculation of the predictive density p(xk|y1:k−1).
Though not available in closed form, one can use the relation

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (4.3.6)
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and the running particle filter given by (4.3.2) to approximate p(xk|y1:k−1)
using Monte Carlo integration as

p(xk|y1:k−1) ≈
∑

j

p(xk|x(j)
k−1)w

(j)
k−1. (4.3.7)

Substituting (4.3.7) into (4.3.4) we get the posterior density and the MAP
estimation is then obtained by finding the global maxima of it. At this
point, one can in principle, employ any standard optimization technique
to arrive at the MAP estimate. In general, however, this maximization
step is nontrivial due to the possible multimodalities arising from the non
Gaussian nature of the posterior. An approximate method for the MAP
estimate is as follows.

With the view that the cloud of particles {x(i)
k }N

i=1in a running particle
filter constitutes an adaptive discretization of the state space at time k,
one can approximately locate the MAP by first evaluating equation (4.3.4)

at the predicted particle {x(i)
k }N

i=1 and finally selecting the particle with
the highest density. This leads to the approximate particle based MAP
estimate (pf-MAP) as

xMAP
k = arg max

x
(i)
k

p(yk|x(i)
k )
∑

j

p(x
(i)
k |x(j)

k−1)w
(j)
k−1. (4.3.8)

It is clear from equation (4.3.7) that the predictive density can be seen
to be a weighted mixture of state transition densities. It is worthwhile
to note here that in certain situations, this might not work well. For ex-
ample, when the variance of the process noise is very low such that the
mixture components are well separated. In such a situation, a support
point which lies between two such mixture components can have unrea-
sonably low predictive density, although the true likelihood may be high.
As a consequence. this will result in a very low posterior density. This situ-
ation may arise, for example, when the parameter is treated as augmented
state with small artificial process noise and starting with a wide initial
distribution. Here, if the particles sampled from the initial distribution
are away from the true parameter, due to the small process noise variance,
the particles can not be propagated (in time) to the true neighborhood of
the parameter and as a result, the posterior would be very low around the
true neighborhood (in the limit, as the variance of the artificial process
noise goes to zero, the continuous nature of this predictive density breaks
down to the sum of Dirac-delta functions).
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For the theoretical convergence properties of this estimator, the reader
is referred to Driessen and Boers (2008b). One should note that for each
time step, the memory requirement of this MAP estimator is O(N) and
the computational complexity is O(N2). This complexity may possibly be
reduced using the method suggested by Klaas et al. (2006). We do not
discuss this any further.

4.3.2 End Point Viterbi-Godsill MAP (EP-VGM)

In the recent past, Godsill et al. (2001) have developed a method for es-
timating the MAP sequence in nonlinear non-Gaussian dynamic models
using the Viterbi algorithm. At each time k, the method uses the particle
cloud representation as an adaptive discretization of the state space and
then employs the Viterbi algorithm on this discretized state space to find
the MAP estimate of the sequence x0:k. In target tracking problem, this
corresponds to providing (new) MAP estimates of the whole trajectory
of the target at every time point k (using the new observation). Clearly,
the last element of this sequence can be viewed as an estimate of the cur-
rent state. Subsequently, we call this estimate as end point Viterbi-Godsill
MAP (EP-VGM) estimate of xk. Actually in this method, the last element
is obtained first and then using backward recursion, the other elements of
the MAP sequence are obtained. For details, see Godsill et al. (2001).

4.4 Comparing pf-MAP with EP-VGM

In this section we compare the behaviors of EP-VGM and pf-MAP as
an estimate of xk. It is to be noted though that the estimates obtained
using EP-VGM and the pf-MAP are not necessarily the same. While the
Viterbi-Godsill algorithm aims at maximizing p(x0:k|y1:k), pf-MAP aims at
maximizing p(xk|y1:k). The two estimates would be, at least in principle,
the same when the system dynamics are linear-Gaussian, as p(x0:k|y1:k)
is then multivariate Gaussian. However, when there is significant nonlin-
earity and/or non-Gaussianity in the model, such that the joint posterior
p(x0:k|y1:k) is non-Gaussian, the output of these estimators can be quite
different. For an illustration, please see Boers et al. (2009). Subsequently,
we investigate their behaviors through numerical simulations. In this con-
text, we emphasize that the calculation of EP-VGM does not require the
backtracking step of the Viterbi algorithm as we do not seek the whole
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sequence. Consequently, the CPU time for EP-VGM does not involve any
backtracking step.

For comparison purpose, we first start with the linear Gaussian model
(i.e. model (A)). For this model, we take α = 1. Here, the true MAP for the
current state can be extracted using Kalman filter. The root mean square
error (RMSE) estimate with respect to true MAP over 20 Monte Carlo
runs with 200 time steps along with the average CPU time (in second) are
shown in Table 4.1 and Table 4.2. The average CPU time reported here

pf-MAP EP-VGM

Sample RMSE RMSE

100 0.007459 0.007430

200 0.006604 0.006653

400 0.006202 0.006224

1000 0.005948 0.006034

Table 4.1: Linear Gaussian model: RMSE

pf-MAP EP-VGM

Sample avg. CPU avg. CPU

100 0.0085 0.4765

200 0.0265 1.7461

400 0.1008 7.8359

1000 0.4890 49.9367

Table 4.2: Linear Gaussian model: average CPU time

does not include the cost of computation common for both the methods
as we have used the same running particle filter for each Monte Carlo
run. It is evident that for the same number of particles, RMSE’s for both
the methods behave similarly while the average CPU time for pf-MAP is
substantially less.

Next we consider the nonlinear model(B). Since for this example, the
true MAP can not be obtained analytically, we compare them as an esti-
mator of the current state. The RMSE estimate is done with respect to
true (synthetic) state over 20 Monte Carlo runs with 200 time steps. The
results are shown in Table 4.3 and Table 4.4:
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pf-MAP EP-VGM

Sample RMSE RMSE

100 5.2964 5.5667

250 4.9707 5.2567

500 4.8530 5.4184

1000 4.4659 5.2433

Table 4.3: Nonlinear model: RMSE

pf-MAP EP-VGM

Sample avg. CPU avg. CPU

100 3.515e-05 0.0033

250 1.836e-04 0.0194

500 6.054e-04 0.0851

1000 0.0022 0.3457

Table 4.4: Nonlinear model: average CPU time

We observe that in terms of RMSE estimate, pf-MAP performs slightly
better as an estimate of current state while it is also computationally much
cheaper.

4.5 Improvement over the estimated pf-MAP

In section 4.3.1, the pf-MAP is estimated by comparing the density val-
ues at the current particles and choosing the one with the highest density.
We note, however that the predictive density p(xk|y1:k−1) can be approx-
imated, as given by (4.3.7), at any point xk. The same is then true for
the posterior density p(xk|y1:k) by virtue of (4.3.4). Consequently, we can
use different optimization methods such as Genetic Algorithm or any gra-
dient based continuous optimization method to maximize the posterior
density. For subsequent numerical experiments in this section, we use the
unconstrained optimization function ’fmincon’ of MATLAB with default
parameter setting. Here, the pf-MAP as obtained in section 4.3.1, is taken
as initial starting point for the MAP estimate using gradient based opti-
mization technique (subsequently referred to as ’grad-MAP’).

We consider the nonlinear model as given in equations (4.1.3)-(4.1.4).
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For the running particle filter, we use N = 500 particle, T = 200 and state
transition density as proposal. For a typical run, the results are shown in
Figure 4.4 through Figure 4.6.

We observe that the gradient-MAP obtained with the pf-MAP as a start-
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Figure 4.4: Nonlinear model: simulated state (Xsyn), pf-MAP and grad-
MAP over time

ing point has slight marginal edge over the pf-MAP in terms of estimation
efficiency while, it is computationally heavier due to the further overload
of continuous optimization method.

Another suggestion to improve the overall performance would be to
use only a subset of particles in the maximization step of finding pf-MAP
of section 4.3.1 and with this (crude) estimate as starting point, obtain
the grad-MAP. This may result in a high reduction of computational load,
with the level of estimation efficiency expected to remain similar. Fur-
thermore, this approach can be combined with reducing the number of
particles in constructing the predictive density (as discussed in the next
section). However, these suggestions are not pursued here further.
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4.6 Particle tweaking effect on predictive density

While evaluating the pf-MAP, we have additional flexibility to explore the
effect of tweaking the number of particles used in constructing the predic-
tive density. The predictive density is approximately obtained from the
running particle filter using the Monte Carlo integration as given in equa-
tion (4.3.7). For this Monte Carlo integration, instead of using the whole

cloud, one can use a subset of {x(j)
k−1, w

(j)
k−1}N

j=1 to reduce the computa-
tional cost. The reduced set of particle (NR) can be obtained from the
original cloud, for example, through a resampling step. We subsequently
compare the tweaking effect numerically in terms of average CPU time
(in second) and RMSE estimate over 20 Monte Carlo runs with 200 time
steps. For the running particle filter, the state transition density is chosen
as the proposal. For the linear model (with α = 0.5), the RMSE is esti-
mated with respect to the true MAP extracted from Kalman filter (with
p(x0) ∼ N (0, 2)) and the result is shown in Table 4.5. We observe that the

Original Tweaking RMSE Avg. CPU

size (N) size (NR)

500 500 0.0216 15.48
250 0.0216 11.49
125 0.0216 09.55

1000 1000 0.0153 66.47
500 0.0153 45.13

250 0.0153 37.82

Table 4.5: Tweaking : linear model

tweaking leads to huge computational savings while it does not affect the
accuracy in terms of RMSE estimate. To investigate the effect further, we
next consider the nonlinear model. Since, in this case, the true MAP is
not known analytically, the RMSE is estimated with respect to true (syn-
thetic) state over 20 Monte Carlo runs with 200 time steps. The result is
shown in Table 4.6.

Here also, we observe that by reducing the number of particles in con-
structing predictive density, the average CPU time falls drastically while
the RMSE does not change so much.
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Original Tweaking RMSE Avg. CPU

size (N) size (NR)

1000 5.1922 78.10
1000 500 5.1608 54.26

250 5.2115 46.39
100 5.3503 39.81

Table 4.6: Tweaking : nonlinear model

In conclusion, it seems that the particle tweaking in predictive density
evaluation can lead to a substantial improvement in computational saving
at a little compromise on RMSE value.

4.7 Particle based smoothed marginal MAP es-
timator (ps-MAP)

So far we have considered the different aspects of the filter MAP estimation
using the weighted particles. In this section, our main objective is to extend
the MAP estimation idea to marginal smoothing. We again consider the
same dynamic system as given by (2.2.1) and (2.2.2). Now, the problem
can be mathematically posed as finding

xMAP
t|T = arg max

xt

p(xt|y1:T ) (4.7.1)

where t < T .

Our starting point is that there already exists a (weighted) particle
cloud for the marginal smoother. Based on these weighted cloud rep-
resentation, we calculate the marginal smoothing density using similar
ideas as in pf-MAP. From the literature, we find that ”forward-backward
smoothing” is the conventional approach to generate the particle clouds
of a marginal smoother. Subsequently, we derive the smoothed marginal
MAP from it. As an application we use this marginal MAP to find the ini-
tial condition. Recently ”generalized two-filter smoothing” has been used
to generate the particle cloud for the marginal smoother. In this case as
well, we explain how to extract the smoothed marginal MAP from the
particle clouds.
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4.7. PARTICLE BASED SMOOTHED MARGINAL MAP
ESTIMATOR (PS-MAP)

4.7.1 Forward-Backward Smoothing

The marginal smoother can be obtained using a forward- backward smoother
(Kitagawa (1987)) as

p(xt|y1:T ) = p(xt|y1:t)

∫
p(xt+1|y1:T )p(xt+1|xt)

p(xt+1|y1:t)
dxt+1, (4.7.2)

where, p(xt|y1:t) and p(xt+1|y1:t) are the filtering density and one step
ahead predictive density respectively, at time t. Thus, starting with p(xT |y1:T ),
p(xt|y1:T ) can be recursively obtained from p(xt+1|y1:T ). Using the above
recursion, the marginal smoothing distribution can now be approximated
by the weighted particle cloud as described in (Briers et al. (2004); Hürzeler
and Künsch (1998)). Here, one starts with the forward filtering pass for
computing the filtered distribution at each time step using the particle
filter as

P̂ (dxt|y1:t) =

N∑

i=1

ω
(i)
t δ

x
(i)
t

(dxt). (4.7.3)

Then one performs the backward smoothing pass as given by (4.7.2) to
approximate the smoothing distribution

P̂ (dxt|y1:T ) =
N∑

i=1

ω
(i)
t|T δ

x
(i)
t

(dxt), (4.7.4)

where the smoothing weights are obtained through the following backward
recursion:

ω
(i)
t|T

= ω
(i)
t

N∑

j=1

[ω
(j)
t+1|T

p(x
(j)
t+1|x

(i)
t )

N∑

k=1

p(x
(j)
t+1|x

(k)
t )ω

(k)
t

] (4.7.5)

with ω
(i)
T |T = ω

(i)
T . It is important to note that the forward-backward

smoother keeps the same particle support as used in filtering step and re-
weights the particles to obtain the approximated particle based smoothed
distribution. Thus, success of this method crucially hinges on the filtered
distribution having supports where the smoothed distribution is significant.

To obtain the smoothed marginal MAP, one needs the posterior den-
sity p(xt|y1:T ) from the above cloud representation. Here, we proceed as
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follows. Using the Bayes’ rule, one can write the one step ahead predictive
density in equation (4.7.2) as

p(xt+1|y1:t) =
p(xt+1|y1:t+1)p(yt+1|y1:t)

p(yt+1|xt+1)
. (4.7.6)

Then equation (4.7.2) becomes

p(xt|y1:T ) = p(xt|y1:t)

∫
p(xt+1|y1:T )p(xt+1|xt)p(yt+1|xt+1)

p(xt+1|y1:t+1)p(yt+1|y1:t)
dxt+1

=
p(xt|y1:t)

p(yt+1|y1:t)

∫ [
p(xt+1|xt)p(yt+1|xt+1)

p(xt+1|y1:t+1)

]
p(xt+1|y1:T )dxt+1

≈ p(xt|y1:t)

p(yt+1|y1:t)

∫ [
p(xt+1|xt)p(yt+1|xt+1)

p(xt+1|y1:t+1)

]
P̂ (dxt+1|y1:T ).

Making use of the particle representation of P̂ (dxt|y1:T ), given by (4.7.4),
and subsequently approximating the above integration by a Monte Carlo
integration method, one obtains

p(xt|y1:T ) ≈ p(xt|y1:t)

p(yt+1|y1:t)

N∑

j=1

[
p(x

(j)
t+1|xt)p(yt+1|x(j)

t+1)

p(x
(j)
t+1|y1:t+1)

]
ω

(j)
t+1|T . (4.7.7)

Further approximating the filtered density p(xt+1|y1:t+1) from the running
particle filter (Driessen and Boers (2008a)) as

p(xt+1|y1:t+1) ≈
p(yt+1|xt+1)

∑
k p(xt+1|x(k)

t )w
(k)
t

p(yt+1|y1:t)
(4.7.8)

we can rewrite equation (4.7.7) as

p(xt|y1:T ) ≈ p(xt|y1:t)
N∑

j=1




p(x
(j)
t+1|xt)

N∑
k=1

p(x
(j)
t+1|x

(k)
t )ω

(k)
t


ω

(j)
t+1|T . (4.7.9)

The MAP estimate of the marginal smoothing density, p(xt|y1:T ) can then
be obtained by finding the location of its global maximum. This maxi-
mization can be performed using different optimization methods. As in
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the case of pf-MAP, here, as well, we maximize along the particles. This
leads to the approximate particle based MAP estimate as

xMAP
t|T ≈ arg max

x
(i)
t

p(x
(i)
t |y1:t)

N∑

j=1




p(x
(j)
t+1|x

(i)
t )

N∑
k=1

p(x
(j)
t+1|x

(k)
t )ω

(k)
t


ω

(j)
t+1|T , (4.7.10)

where N is the number of particles used at each time step. By using
equation (4.7.5), the estimator can be further simplified to

xMAP
t|T = arg max

x
(i)
t

p(x
(i)
t |y1:t)

ω
(i)
t|T

ω
(i)
t

, (4.7.11)

where the filtered density p(xt|y1:t) at the particle cloud {x(i)
t }N

i=1 can be
evaluated during the forward filtering step (Driessen and Boers (2008a))
as

p(x
(i)
t |y1:t) ≈

p(yt|x(i)
t )
∑

j p(x
(i)
t |x(j)

t−1)w
(j)
t−1

p(yt|y1:t−1)
. (4.7.12)

Since p(yt|y1:t−1) in equation (4.7.12) is independent of x
(i)
t , to obtain

xMAP
t|T , one can replace p(x

(i)
t |y1:t) in equation (4.7.11) by the un-normalized

filtered density

q(x
(i)
t |y1:t) = p(yt|x(i)

t )
∑

j

p(x
(i)
t |x(j)

t−1)w
(j)
t−1. (4.7.13)

We note here that a numerical problem may arise in evaluating equation
(4.7.11) if the filtered weights attached to some particles are very small.
This may happen when the ”particle degeneracy” occurs. This problem
can be effectively addressed using a combination of efficient importance
proposal (Doucet et al. (2000); Guo et al. (2005); Saha et al. (2009b))
along with resampling steps. The algorithm for the smoothed marginal
MAP proposed above is given below.

Algorithm :

• Given observation y1:T,

For i = 1, .., N, where N is the number of particles
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Forward Filtering step

• Assume p(x0), draw x
(i)
0 from p(x0), set ω

(i)
0 = 1

N
.

• Run Particle Filter to generate and store {x(i)
t , ω

(i)
t } for t = 0, ..., T

• Evaluate (un-normalized) filtered pdf for t = 1, ..., T, at cloud

points i

q(x
(i)
t |y1:t) = p(yt|x(i)

t )
∑

j

p(x
(i)
t |x(j)

t−1)ω
(j)
t−1

starting with q(x
(i)
0 ) = p(x

(i)
0 ) and store

Backward Smoothing step

• Set ω
(i)
T |T = ω

(i)
T

• For t = T − 1, ..., 0 evaluate the smoother importance weights as

ω
(i)
t|T = ω

(i)
t

N∑

j=1

[ω
(j)
t+1|T

p(x
(j)
t+1|x

(i)
t )

N∑
k=1

p(x
(j)
t+1|x

(k)
t )ω

(k)
t

]

• Evaluate the approximate smoothed marginal MAP as

xMAP
t|T = arg max

x
(i)
t

q(x
(i)
t |y1:t)

ω
(i)
t|T

ω
(i)
t

The memory requirement of this marginal MAP smoother is O(N) and the
computational complexity is O(N2).

4.7.1.1 Estimation of (unknown) initial condition

We first consider the linear Gaussian model as given by (4.1.1)-(4.1.2) with
α = 0.8, but, the initial state x0 is assumed to be unknown (constant).
The synthetic data {xk, yk}k=0:500 is generated starting with x∗

0 = 10. To
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estimate the unknown initial state x0, we start with initial prior p(x0) ∼
U [0, 20] where U [a, b] denotes uniform probability density function with
lower bound a and upper bound b respectively. We use ”efficient proposal”
as given in Doucet et al. (2000) in the forward filtering step with particle
sample size N = 500. The estimate of the initial unknown state is given
by the particle based MAP of p(x0|y0:T ). We repeat this MAP state esti-
mate for 30 Monte Carlo runs. The mean and variance of the estimator
are shown in Table 4.7. The result shows that the smoothed initial density
peaks around the true initial state, even though we have started with a
pretty wide uniform initial prior. We also plot for a particular realization,
the (backward) evolution of the marginal smoother estimates (i.e. mean
and the MAP) for the first 10 time steps and the un-normalized filtered and
smoothed probability density functions (pdfs) of x0 in Figure 4.7 and Fig-
ure 4.8 respectively. As expected, the mean and MAP are almost similar
and the smoothed density is more concentrated than the filtered density
around the true value 10. Next, we consider the nonlinear time series

Mean(xMAP
0|500 ) V ar(xMAP

0|500 )

9.9726 0.0915

Table 4.7: Mean and Variance of estimated initial state

model as given by (4.1.3) and (4.1.4). The synthetic data {xk, yk}k=0:500 is
generated starting with x∗

0 = 10. As in the previous case, we start with ini-
tial prior p(x0) ∼ U [0, 20]. For this nonlinear problem, we use the ”Exact
Moment matching (EMM) proposal” as given in Saha et al. (2006) during
forward filtering step with particle sample size N = 500. The estimate of
the initial unknown state is given by the particle based MAP of p(x0|y0:T ).
We repeat this MAP state estimate for 30 Monte Carlo runs. The mean
and variance of the estimator are shown in Table 4.8. The result in Table
4.8 is really remarkable as we can see by comparing with Table 4.7. Even
for highly nonlinear model as considered above and with wide uniform ini-
tial prior, the result is almost as good as in linear case. Of course the
variance is somewhat larger, but that is to be expected given the highly
nonlinear nature of the problem.

It is also interesting to study the behavior of the smoother when
the initial distribution is supported on a larger interval. Starting with
p(x0) ∼ U [−40, 40], the (backward) evolution of the marginal smoother es-
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Figure 4.7: Simulated state (Xsyn), MAP and mean of the marginal
smoothing posterior for the first 10 time steps
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Figure 4.8: Filtered and smoothed probability density functions for the
initial state x0
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Figure 4.9: Simulated state (Xsyn), MAP and mean of the marginal
smoothed posterior for the first 10 time steps
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Figure 4.10: Filtered and smoothed probability density functions for the
initial state x0
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Mean(xMAP
0|500 ) V ar(xMAP

0|500 )

9.7165 0.9236

Table 4.8: Mean and Variance of estimated initial state

timates (i.e. mean and the MAP) for the first 10 time steps for a particular
realization are shown in Figure 4.9 while the corresponding un-normalized
filtered and smoothed pdfs for x0 are shown in Figure 4.10. It is interesting
to note that the smoothed pdf of the initial state is bimodal (the smaller
peak is near −10). Although the dominant mode is very close to the true
initial state, x∗

0 = 10, the contribution from the weaker mode, shifts the
smoothed mean away from x∗

0 (as seen from Figure 4.9, the smoothed mean
is near 8 here). This further strengthens the justification of using MAP in
such scenario.

4.7.2 Two-Filter Smoothing

One shortcoming of the forward-backward smoother is its reliance on the
support points (particles) generated during the forward filtering pass. To
circumvent this problem, two-filter smoother has been envisaged in the
literature (Briers et al. (2004); Kitagawa (1996); Isard and Blake (1998)),
where one combines samples from particle filter in the forward direction
with those from a so called ”backward information filter” to produce the
(weighted) cloud representation of p(xt|y1:T ). We describe, in this section,
how the smoothed marginal MAP can be obtained from the particle cloud
generated by the generalized two-filter smoother. We start with a brief
description of how two filter particle smoother is obtained. For this, we
follow Briers et al. (2004).

In the two-filter smoother framework, the so-called backward informa-
tion filter p(yt:T |xt) is calculated sequentially from p(yt+1:T |xt+1) as

p(yt:T |xt) = p(yt|xt)

∫
p(xt+1|xt)p(yt+1:T |xt+1)dxt+1. (4.7.14)

As noted by Briers et al. (2004), p(yt:T |xt) is not a probability density
function in xt and actually, its integral over xt may not even be finite.
The smoothing algorithm in (Kitagawa (1996); Isard and Blake (1998))
assumes implicitly that

∫
p(yt:T |xt)dxt < ∞. However, if this assumption

does not hold, SMC based methods, which can only approximate finite
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measures, will not work anymore. To avoid this, ”generalized two-filter
smoothing” has been proposed by Briers et al. (2004), where the smoothing
distributions are computed through a combination of forward filter and an
auxiliary probability distribution p̃(xt|yt:T ) in argument xt. This auxiliary
density is defined through a sequence of artificial distributions γt(xt) as

p̃(xt|yt:T ) ∝ γt(xt)p(yt:T |xt).

It then follows from (4.7.14) that

p̃(xt|yt:T ) ∝ γt(xt)p(yt|xt)

∫
p(xt+1|xt)

p̃(xt+1|yt+1:T )

γt+1(xt+1)
dxt+1. (4.7.15)

This in turn, is used to generate recursively the weighted particle repre-
sentation of the backward information filter

p̃(xt|yt:T ) ≃
N∑

k=1

δ(xt − x̃
(k)
t )ω̃

(k)
t . (4.7.16)

The marginal smoother p(xt|y1:T ) is then computed by combining the
outputs of the forward filter and the backward information filter as

p(xt|y1:T ) ∝ p(xt|y1:t−1)p(yt:T |xt)

=

(∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

)(
p̃(xt|yt:T )

γt(xt)

)
. (4.7.17)

Evaluating the integral in (4.7.17) by Monte Carlo integration using the

forward filter cloud (x
(j)
t−1, ω

(j)
t−1) one obtains

p(xt|y1:T ) ∝




N∑

j=1

p(xt|x(j)
t−1)ω

(j)
t−1



(

p̃(xt|yt:T )

γt(xt)

)
. (4.7.18)

Finally, the particle cloud representation is obtained using the cloud (x̃
(k)
t , ω̃

(k)
t )

from the backward filter:

p(xt|y1:T ) ≃
N∑

k=1

δ(xt − x̃
(k)
t )ω̃

(k)
t|T (4.7.19)

where

ω̃
(k)
t|T ∝ ω̃

(k)
t

γt(x̃
(k)
t )

N∑

j=1

p(x̃
(k)
t |x(j)

t−1)ω
(j)
t−1. (4.7.20)
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Thus, in essence the particles from the forward filter are used to re-
weight those from the backward filter so that they represent the marginal
smoother distribution. We refer the readers to the original article by Briers
et al. (2004) for more details.

Now we describe how to derive the smoothing density from the particle
smoother obtained as above. Note that using (4.7.16) one can rewrite
equation (4.7.15) as

p̃(xt|yt:T ) ∝ γt(xt)p(yt|xt)
N∑

k=1

p(x̃
(k)
t+1|xt)

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1. (4.7.21)

It then follows from (4.7.18) that

p(xt|y1:T ) ∝




N∑

j=1

p(xt|x(j)
t−1)ω

(j)
t−1



(

p(yt|xt)
N∑

k=1

p(x̃
(k)
t+1|xt)

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

)
.

(4.7.22)
The required smoothed marginal MAP can now be obtained by maximiz-
ing the unnormalized smoothing density, given by the right hand side of
equation (4.7.22). Furthermore, when this maximization is done along the

particles x̃
(i)
t , we have

p(x̃
(i)
t |y1:T )

∝




N∑

j=1

p(x̃
(i)
t |x(j)

t−1)ω
(j)
t−1



(

p(yt|x̃(i)
t )

N∑

k=1

p(x̃
(k)
t+1|x̃

(i)
t )

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

)

=


 1

γt(x̃
(i)
t )

N∑

j=1

p(x̃
(i)
t |x(j)

t−1)ω
(j)
t−1



(

γt(x̃
(i)
t )p(yt|x̃(i)

t )

N∑

k=1

p(x̃
(k)
t+1|x̃

(i)
t )

γt+1(x̃
(k)
t+1)

ω̃
(k)
t+1

)
.

From equations (4.7.20) and (4.7.21) this reduces to

p(x̃
(i)
t |y1:T ) ∝




ω̃
(i)
t|T

ω̃
(i)
t



(
p̃(x̃

(i)
t |yt:T )

)
. (4.7.23)

Hence, the required MAP can be obtained as

xMAP
t|T = arg max

x̃
(i)
t

p̃(x̃
(i)
t |yt:T )

ω̃
(i)
t|T

ω̃
(i)
t

, (4.7.24)

where p̃(x̃
(i)
t |y1:T ) is evaluated using equation (4.7.21).
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4.8 Concluding Remarks

The posterior of a nonlinear non Gaussian dynamic system can be success-
fully constructed using particle filtering. The MMSE is a popular point
estimate and can easily be obtained from this posterior. However, for
certain practical applications like target tracking, where multi modality
of posterior is very common, MMSE does not always provide a reason-
able estimate. In such situations, MAP estimator can serve as a good
alternative to MMSE. Recently a new particle based MAP estimator cor-
responding to a general state space model has been derived (Driessen and
Boers (2008a)). In this chapter, we study this particle filter based MAP
estimates. A comparison of this with the so called Viterbi-Godsill MAP
sequence estimator for estimating the current state shows the superior-
ity of the former. Exploiting the fact that the existing method provides
the posterior density p(xt|y1:t) at any support point xt, we have employed
gradient based optimization method, which does not restrict itself to the
particles when finding the MAP. We have, however, found that the gra-
dient based method demands more computational load while estimation
efficiency remaining almost the same. Some suggestions were made for
improvement, though they have not been pursued. It has been shown nu-
merically that by tweaking the number of particles during the evaluation
of predictive density, one can reduce the computational load substantially
without compromising much on RMSE value.

Finally, we have extended the idea of filter MAP to develop smoothed
marginal MAP based on a particle representation of the smoother distribu-
tion p(xt|y1:T ). We derive a very simple formula for the smoothed marginal
MAP when either forward-backward smoother or generalized two-filter
smoother is used to generate the particle cloud. The smoothed marginal
MAP is applied to estimate the unknown initial condition of a dynamic
system. We observe that the estimation works quite well even in nonlinear
setting.
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Chapter 5

Parameter estimation using
particle filtering/smoothing

5.1 Introduction

Nonlinear filtering has been a focus of interest in statistical and engineer-
ing community for more than 30 years (Ristic et al. (2004)). As discussed
in the previous chapters, starting with Gordon’s seminal paper (Gordon
et al. (1993)), particle filtering (PF) method has been getting increasing
attention for solving such nonlinear and/or non Gaussian estimation prob-
lems. The popularity of PF stems from its generality in the sense that
it does not require any ad-hoc approximation of the dynamic models and
it is relatively easy to implement. In this method, the posterior is ap-
proximated by a cloud of N (N ≫ 1) weighted particles, whose empirical
measure closely approximates the true posterior for large N (Arulampalam
et al. (2002)). Standard PF algorithms assume the perfect knowledge of
the static parameters of the underlying model whereas, in many practical
situations, often those model parameters of the dynamic system are not
known a priori and their estimation is also of interest. However, in this
context, standard PF fails and it is necessary to rely on more sophisti-
cated algorithms. Generic solutions using the particles based method for
parameter estimation, which are useful for any model are still limited in
performance, thus opening up the possibility of further research in this
direction.

Among the existing approaches, the classical remedy is to augment
the parameter as additional state with artificial dynamics and then tak-
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ing filtered estimates of the additional state vector as the estimates of
parameters. The artificial evolution, however, in effect, renders the fixed
parameter into a slowly varying one (Liu and West (2001)). As a result,
the variance of the estimate of the parameter increases with time. Another
proposed scheme is to marginalize the static parameters out of the pos-
terior either analytically (Djurić and Miguez (2002)) or by Monte Carlo
procedures (Storvik (2002)). However, such methods are strictly model de-
pendent. Andrieu et al. (2005) also proposed an online estimation method
for static parameters with the assumption that the state space models
are stationary and ergodic. Among others, the particle based maximum
likelihood (ML) estimator has also been developed recently. In this frame-
work, when the number of parameters is small, one can consider the direct
particle approximation of the log likelihood evaluated on a grid of values
of parameters (Olsson and Rydén (2008)). However, when the dimension
of parameter vector is large, optimizing the log likelihood through a grid
based approximation becomes unwieldy and calls for a more structured
and efficient optimization strategy like gradient based optimization or the
Expectation-Maximization (EM) (see Cappé et al. (2007); Kantas et al.
(2009) and the references there). Although estimates based on ML are
asymptotically optimal, particle based implementation is rather compli-
cated and the convergence is known to require a substantial amount of
data (Doucet and Tadić (2003)). We do not get into the EM algorithm
any further. For an excellent discussion on the EM algorithm, see the
recent article by Ninness (2009).

In this chapter, we propose some new particle filtering/smoothing based
schemes for estimating the parameter of a general state space model. In all
these schemes, we avoid any effect of artificial noise on the (final) estimate
of the parameter. These schemes are described in the subsequent sections
(section 5.2–5.5). Finally we end this chapter with a conclusion.

5.2 Augmented state space formulation without
any parameter dynamics

We Consider the following dynamic system:

xk+1 = f(xk, wk+1; θ), (5.2.1)

yk = h(xk, vk), k = 0, 1, . . . (5.2.2)
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where θ is a fixed unknown parameter, (xk) are the unobservable states
with (known) initial prior density p(x0) and (yk) are the observations. The
process noises (wk) are assumed to be independent of the measurement
noises (vk). Here, we treat the unknown parameter as an additional state
component, but without any dynamic evolution. The augmented state
space can be written as

xk+1 = f(xk, θk, wk+1) (5.2.3)

θk+1 = θk (5.2.4)

yk = h(xk, vk), k = 0, 1, . . . (5.2.5)

Now, using notation Xk+1 = [xk+1 θk+1]
t and Wk+1 = [wk+1 0]t, the above

model can be rewritten as

Xk+1 = g(Xk,Wk+1)

yk = h(Xk, vk).

For this method, we assume that the interval within which the parameter
lies, is known, which may be realistic in many practical situations and is
also considered in other estimation techniques (Doucet and Tadić (2003)).
In this method, the particles for each parameter are initially selected arbi-
trarily from any assumed (possibly uniform) distribution, whose support
covers the known interval for the parameter. At each subsequent time
step, the particles representing the parameter for the initial time step, are
resampled using simple random sampling and are then propagated to the
next time step. The particles representing the true state are resampled us-
ing systematic resampling, only when the effective sample size falls below
the threshold, which is two-third of the samples used. In each time step,
the individual parameter is estimated by weighted average of particles rep-
resenting the parameter, where the weights are the importance weights of
the corresponding particles representing the state. A known limitation of
this method is that, in absence of any evolution for parameter, the explo-
ration of the parameter space is limited to the initial cloud generated for
the parameter. We demonstrate the proposed method on the benchmark
time series model (Gordon et al. (1993)) given by

xk = f(xk−1; θ1, θ2) + wk, (5.2.6)

yk =
x2

k

20
+ vk, (5.2.7)
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where f(xk−1; θ1, θ2) = θ1xk−1 +
θ2xk−1

1+x2
k−1

+ 8cos(1.2k) and θ1 and θ2 are

unknown parameters. We assume p(x0) ∼ N (0, 5), wk ∼ N (0, 10) and
vk ∼ N (0, 1), which are mutually independent. For simulation, we use
T = 300, N = 2000, θ1(0) ∼ U [0, 1], θ2(0) ∼ U [20, 30], where U [L,U ] de-
notes uniform distribution with lower bound L and upper bound U . The
estimate of the parameters θ1 and θ2 are shown in Figure 5.1 and Fig-
ure 5.2 respectively. We see that although the estimates are oscillating
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Figure 5.1: Estimate of θ1

around the true values, they are quite reasonable. Furthermore, the be-
havior of the estimated parameters are similar to the case of adding the
roughening noise to the parameter values as described in section 5.4 below.

Subsequently, we apply this method for estimating the stochastic volatil-
ity and the model parameters from the observed stock data. This is a no-
toriously difficult problem and a major challenge in mathematical finance.
For this purpose, we consider here the Heston model with jumps (Bates
model), which is highly popular in mathematical finance (Aihara et al.
(2008)). For the original Heston model (without jump), see Aihara et al.
(2009).
We have already outlined the particle filtering implementation of Bates
model in appendix B for the purpose of estimating the volatility. In this
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Figure 5.2: Estimate of θ2

section, we want also to identify the parameters contained in the system
model. For this, we construct the augmented state zk = (vk, α) where

α = [κ θ ξ µS ρ λ µJ σJ ].

To perform the particle filter for zk we assume that each component of
α is independent and uniformly distributed with known upper and lower
bounds, and is independent of the initial distribution of v0, which is taken
as Gaussian. Hence we can apply the particle filter algorithm outlined
above to zk-process. Noting that the state α is time independent and if
the parameter value α(i) is not updated, we encounter the so called de-
generation problem. To partially mitigate this deficiency, we use here the
simple random resampling for each parameter and apply the systematic
resampling for the state vk. Repeating this resampling for every param-
eter at each time step, we observe that the estimated parameters do not
degenerate.
We next performed the simulation studies. In the subsequent simulations,
resampling for the state v(·) is done whenever the effective sample size
(as defined by equation (2.3.15)) falls below two-third of the sample size
used. To check the algorithm proposed here, the stock price and volatility
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process are simulated using the following values of the parameters:

κ = 3.0, θ = 0.1, µ = 0.1, ρ = −0.2,

ξ = 0.4, λ = 5.0, µJ = −0.1, σJ = 0.2.

The simulated volatility and the log price y(t) are shown in Figure 5.3 and
Figure 5.4 respectively. In this simulation studies, we set ∆t = 0.001 and
use 2000 particles.

For the unknown parameters, we set

κ ∼ U [1, 10], θ ∼ U [0.05, 0.5], µ ∼ U [0.05, 0.3],

ξ ∼ U [0.01, 0.91], ρ ∼ U [−0.8, 0]

λ ∼ U [0, 7], µJ ∼ U [−0.2, 0], σJ ∼ U [0, 0.4].

We also set

v0 ∼ N(0.25, 0.022).

The true and estimated volatility are demonstrated in Figure 5.5. The
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Figure 5.3: Simulated volatility

estimates of unknown parameters are shown in Figures 5.6–5.13. Some of
the parameters show distinct bias. It is known that the estimation of the
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Figure 5.5: True and estimated volatility processes
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parameter κ is very difficult. In this example, the total number of param-
eters is quite large. As a result, with merely 2000 samples as used here,
the effective exploration of the state space in region where the joint prob-
ability of zk is high, becomes difficult. Increasing the number of samples
will possibly result in better estimate. This needs further study.

The above method is very heuristic in its approach. The estimation
exercise seems to show mixed results. We proceed further with other meth-
ods.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

9

10
True value of κ(green) and its estimate(blue)

Time

T
ru

e 
an

d 
es

tim
at

ed
 p

ro
ce

ss
es

Figure 5.6: True and estimated κ
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Figure 5.7: True and estimated θ
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Figure 5.8: True and estimated ξ
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Figure 5.9: True and estimated µ
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Figure 5.10: True and estimated ρ
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Figure 5.11: True and estimated λ
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Figure 5.12: True and estimated µJ
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Figure 5.13: True and estimated σJ
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5.3 Parameter estimation using smoothed marginal

MAP

As is well known, one of the common approaches of estimating a parameter
in a state-space model is to augment the parameter as an extra state
with small artificial dynamics and then take the filtered estimate as the
estimate of the parameter. Since in this augmented framework, the initial
augmented state vector is free of any artificial dynamics (i.e. not corrupted
by any artificial noise), we consider the marginal smoother of the initial
augmented state to be the estimate of the true (fixed) parameter (Saha
et al. (2008b)). It is expected that as more and more observations are
available, the smoothed estimate would converge to the true parameter
value. We start here with the same dynamic system as given in equations
(5.2.1)–(5.2.2). Next we augment the state space by treating the parameter
as additional state. Note that the dimension of the state increases by the
numbers of parameters. Now the augmented state space can be written as

xk+1 = f(xk, θk, wk+1) (5.3.1)

θk+1 = θk + ηk+1 (5.3.2)

yk = h(xk, vk), k = 0, 1, . . . (5.3.3)

with θ0 = θ, which is unknown here, ηk+1 is the artificial noise driving the
additional state (parameter) in the augmented framework. Now, using the
notation Xk+1 = [xk+1 θk+1]

t and Wk+1 = [wk+1 ηk+1]
t, the above model

can be rewritten as
Xk+1 = g(Xk,Wk+1)

yk = h(Xk, vk).

Then we can estimate the initial state vector X0 using smoothed marginal
MAP as developed in section 4.7 of the previous chapter. The correspond-
ing estimate for the augmented state θ0 would be taken as the estimate of
the parameter. This is a batch method of estimating the parameter. We il-
lustrate this approach by the following two numerical examples below. For
all these examples, we use Forward-Backward marginal MAP smoother.
We begin with a linear example:

xk = θxk−1 + wk (5.3.4)

yk = xk + vk (5.3.5)
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with wk ∼ N (0, 1), vk ∼ N (0, 0.1). wk is independent of vk and the
the (unknown) true parameter is given by θ∗ = 0.5. We take ηk ∼
N (0, 0.0025). Note that θ0 is independent of x0. With p(x0) ∼ N (0, 5),
we started with p(θ0) ∼ U [−5, 5]. We use N = 1000 particles and state
transition density, p(xk|xk−1) as our proposal during forward filtering step.
Although, for stability one should consider θ here to be between (−1, 1),
one may not know the stability zone in unknown system. It seems that the
particle filter adjusts itself automatically. The mean and the standard de-
viation of the estimator of θ over 30 Monte Carlo runs are shown in Table
5.1 below. Although the assumption of uniform initial prior is radically

True parameter Mean(θMAP
0|500 ) Std(θMAP

0|500 )

0.5 0.422 0.265

Table 5.1: True parameter, mean and standard deviation of the estimated
parameter

different from the knowledge of exact initial condition (parameter), we see
the parameter estimate to be quite good. Next we consider the following
nonlinear example:

xk =
xk−1

2
+

θxk−1

1 + x2
k−1

+ 8cos(1.2k) + wk, (5.3.6)

yk =
x2

k

20
+ vk, (5.3.7)

where wk ∼ N (0, 10) and vk ∼ N (0, 1), which are independent of each
other. The true parameter is θ∗ = 25. With p(x0) ∼ N (0, 5), we started
with p(θ0) ∼ U [−50, 50]. We use N = 1000 particles and state transition
density as proposal during forward filtering step. We set ηk ∼ N (0, 5).
The estimate of θ for 30 Monte Carlo runs is shown in Table 5.2. As re-
marked after Table 5.1, we see the same pattern in a nonlinear problem
as well. We observed that this estimation procedure works quite well even
in nonlinear cases. However, the computational burden with the grow-
ing memory requirement is a major stumbling block here. Additionally,
when the number of parameters is large, the dimension of Xk+1 also in-
creases and the effective exploration of the state space in region where the
joint probability of Xk+1 is high, becomes difficult with a finite number of
(relatively small) samples.
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True parameter Mean(θMAP
0|500 ) Std(θMAP

0|500 )

25.0 27.259 1.241

Table 5.2: True parameter, mean and standard deviation of the estimated
parameter

5.4 Parameter estimation using the marginalized
particle filter method

In many practical situations, the underlying general state space contains
a linear substructure, subject to Gaussian noise. In those cases, the lin-
ear sub structure can be marginalized out and one may use the standard
Kalman filter for this part and particle filter on the remaining part of the
state space model. These two algorithms can be combined into a single
algorithm, known as marginalized particle filter (Schön et al. (2005)), also
known as Rao-Blackwellized particle filter (Doucet et al. (2000); Andrieu
and Doucet (2002)) and mixture Kalman filter (Chen and Liu (2000)). The
resulting posterior distribution is obtained as an optimal Gaussian mixture
approximation to the filtering distribution. Since in this algorithm we are
applying particle filter to a lower dimensional state space and the optimal
filter to the linear substructure, the resulting estimate is expected to be
more accurate than the situation where particle filter is used for the entire
state space model. For a discussion about the possible class of models
where marginalization can be used and the detailed algorithm, one may
refer to Schön et al. (2005) and Karlsson et al. (2005). The potential use
of marginalized particle filter for parameter estimation, where the state
space model is linear in the parameter, has been considered by Schön and
Gustafsson (2003). These authors have considered the evolution of the pa-
rameter by adding an artificial noise (also known as ”roughening noise”’),
whose variance is reduced at each time step. We note that the state space
model here is linear in the parameter, where a Kalman filter is actually
used. Since the Kalman filter can be applied even without a process noise,
at least in theory, we can get rid of this ”artificial noise” in the parameter
estimation and this is the line we pursue in this section. We first compare
our approach to Schön and Gustafsson (2003) for the Chaos example given
there and subsequently, we estimate the parameter of the benchmark time
series model.
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5.4.1 A ”Chaos” example

The chaos model as considered in Schön and Gustafsson (2003) is as fol-
lows:

xk+1 = (1 − xk)xkθ + wk (5.4.1)

yk = xk + vk (5.4.2)

where xk is the state variable, yk is the measurement and θ is the unknown
parameter. Here wk is the process noise and vk is the measurement noise,
which are independent of each other. By treating θ as an additional state,
Schön and Gustafsson (2003) have rewritten the above model (equation
(5.4.1)–(5.4.2)) as

xk+1 = Ak(xk)θk + wk + wx
k (5.4.3)

θk+1 = θk + wθ
k (5.4.4)

yk = hk(xk) + vk (5.4.5)

where Ak(xk) = (1 − xk)xk, hk(xk) = xk. wx
k ∼ N (0, Qw,x

k ) and wθ
k ∼

N (0, Qw,θ
k ) are the roughening noises introduced by them in this model.

The variances of these roughening noises are reduced at each time step
according to Gustafsson and Hriljac (2003). Furthermore, process noise
wk is assumed to be zero, vk ∼ N (0, Rk). The true value of θ is 3.92. The
initial state is x0 ∼ N (0, 1). For the particle filter, state transition density
is used as proposal. For all simulations, Qw,x

0 = 10−2, Rk = 10−5 and
N = 150 (particles), if not stated explicitly otherwise. In the following, we
first validate our Matlab code by reproducing the parameter estimate with
roughening noise (Qw,θ

0 = 10−2) in the parameter space (section 5.4.1.1)
and then in section 5.4.1.2, remove the roughening noise in the parameter
space, i.e. Qw,θ

0 = 0.

5.4.1.1 Parameter estimation with roughening noise in the pa-
rameter space

The initial guess is the same as in Schön and Gustafsson (2003), which
is taken as θ0|−1 ∼ N (3.83, 0.04). The estimate of θ is shown in Figure
5.14. Noting that the mean of this initial guess of θ is too close to the
true value, we next started with θ0|−1 ∼ N (3.5, 0.04), and, in this case
also, we obtained good estimate, which is shown in Figure 5.15. For this
example, it is not obvious how to select Qw,x

0 , Qw,θ
0 and whether Rk plays
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any role for this selection. We next set Rk = 10−2 and checked whether the
lowering of this signal to noise ratio has any effect in parameter estimate.
As is observed from Figures 5.16–5.17, the estimate is oscillating around
the true value and the convergence is comparatively slower in this case.
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Figure 5.14: Estimate of θ with Qw,θ
0 = 10−2

5.4.1.2 Parameter estimation without roughening noise in the
parameter space

We again start with the same set up as in Schön and Gustafsson (2003),

except that Qw,θ
0 = 0. The estimate is shown in Figure 5.18, which is

converging to the true value. Subsequently, we have repeated the esti-
mation with θ0|−1 ∼ N (3.5, 0.04) and from Figure 5.19, we observed the
convergence in this case as well. However, when starting with Rk = 10−2,
we found that, to explore the parameter set initially, we need to set a
higher variance for θ0|−1. With θ0|−1 ∼ N (3.83, 0.5), the corresponding
estimate is shown in Figure 5.20. Thus, we observe that, even without
adding roughening noise to the parameter space in marginalized method,
one can obtain good parameter estimates. We next use this marginalized
method for estimating the parameter of the benchmark time series model.
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Figure 5.15: Estimate of θ with Qw,θ
0 = 10−2
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Figure 5.16: Estimate of θ with Qw,θ
0 = 10−2
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Figure 5.17: Estimate of θ with Qw,θ
0 = 10−2
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Figure 5.18: Estimate of θ with Qw,θ
0 = 0
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Figure 5.19: Estimate of θ with Qw,θ
0 = 0
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Figure 5.20: Estimate of θ with Qw,θ
0 = 0
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5.4.2 Time series example

We consider here the benchmark time series model with unknown param-
eter θ as given in equations (5.3.6)–(5.3.7). We note that this model can
be written as

xk+1 = f(xk) + A(xk)θk + wk+1 (5.4.6)

θk+1 = θk (5.4.7)

yk = h(xk) + C(xk)θk + vk (5.4.8)

where f(xk) = xk

2 +8cos(1.2k), A(xk) = xk

1+x2
k

, h(xk) =
x2

k

20 and C(xk) = 0.

In subsequent simulation study, we take wk ∼ N (0, 10), vk ∼ N (0, 1) and
p(x0) ∼ N (0, 5). For the particle filter, we use 500 particles and the state
transition density as proposal. The true parameter is θ∗ = 25. Starting
with θ0|−1 ∼ N (10, 100), the estimate of θ, using marginalization method
without roughening noise is shown in Figure 5.21. For comparison, we
have also included the estimates obtained using roughening noise, ηk, in
the parameter space. Like before, the variance of this roughening noise is
reduced over each time step as described in Gustafsson and Hriljac (2003).
For this example, we have considered two different cases with η0 ∼ N (0, 1)
and η0 ∼ N (0, 0.1) and the corresponding estimates are shown in Figures
5.22–5.23 respectively. We observe that the parameter is converging in
both the cases, though convergence seems to be slower than the case when
there is no roughening noise.
In the next section, we consider the case where the number of available
observations is limited and we describe another particle smoother based
parameter estimation method, which is more efficient under such a sce-
nario.
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Figure 5.21: Estimate of θ with ηk = 0
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Figure 5.22: Estimate of θ with η0 ∼ N (0, 1)
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Figure 5.23: Estimate of θ with η0 ∼ N (0, 0.1)
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5.5 Parameter estimation using short observation

data

Here we consider a different approach in dealing with the non dynamic
nature of the unknown parameters. Furthermore, we assume that we have
limited observation data. We cast the problem into a joint state estimation
and model parameter identification framework. In our approach, rather
than maximizing the likelihood of the observed data with respect to the pa-
rameters (as done in the ML estimation), we maximize the joint likelihood
of the observation and unobserved state sequence with respect to both the
unknown parameters and the unobserved state sequence. This criterion
has been first considered by Bar-Shalom (1972) for linear-Gaussian case.
See also Lim and Oppenheim (1978), Bagchi and ten Brummelhuis (1994)
for similar approaches. However, the optimization steps for estimating the
joint state sequence for general nonlinear and/or non Gaussian model is
not trivial and as a result, a similar study involving a general state space
model is missing in the literature. For the special cases, where closed form
solutions for optimal state sequence can be obtained (for example, when
both the state and observation sequences are jointly Gaussian), it is known
that the estimate is biased, but for short observation data this method out-
performs the ML estimate in terms of mean-squared error (MSE) (Yeredor
(2000)). MSE is a direct measure of estimation error which takes both bias
and variance into account and in many cases, biased estimates may result in
an MSE that is smaller than the Cramer-Rao lower bound (CRLB), which
characterizes the smallest achievable variance of any unbiased estimator. In
fact, biased estimation methods are used extensively in different signal pro-
cessing applications, specially with short/limited observation data and/or
low signal to noise ratios (SNRs)(Kay and Eldar (2008)). Moreover, an
unbiased estimator may not even exist in many cases or the unbiasedness
requirement can lead to meaningless results. Thus, even though ML is an
asymptotically efficient estimator (unbiased with minimum variance), for
short data records, where ML is indeed incapable of achieving its asymp-
totic optimality, estimator based on minimum MSE may be preferable.
To implement our proposed method for a general state space model, the
crucial step is, as mentioned before, the estimation of the optimal joint
state sequence, which is in general analytically intractable. We approxi-
mate this optimal state sequence using a particle based method developed
in the recent past by Godsill et al. (2001). Thus, our contribution extends
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the existing results for a linear-Gaussian case to a general state space prob-
lem. We give the formulation of our approach in the next section.

5.5.1 Problem formulation

Consider the discrete time state space model

xt ∼ p (·|xt−1; θ) (5.5.1)

yt ∼ p (·|xt; θ) (5.5.2)

where at time t, xt is the unobserved state and yt is the observation. The
static parameter vector θ = (θ1, · · · , θm) ∈ Θ ⊂ R

m. p (·|·) is a generic
conditional probability density function (pdf). Now, given a relatively
small set of observations y1:T , our objective here is to extract information
about the unknown θ. One conventional way to achieve this is the classi-
cal ML criterion, where one maximizes lT (θ) ≡ p(y1:T ; θ) (also known as
likelihood) with respect to θ to obtain θ̂ML, as

arg max
θ

p(y1:T ; θ) = arg max
θ

∫
p(x0:T , y1:T ; θ)dx0:T . (5.5.3)

In practice, however, the above marginalization step is often analytically
intractable. On the other hand, the joint likelihood of the observations
and unobserved state sequence (also known as complete likelihood) is easy
to construct due to the Markovian nature of the model considered :

p(x0:T , y1:T ; θ) = p(x0; θ)

T∏

t=1

p(xt|xt−1; θ)p(yt|xt; θ). (5.5.4)

Consequently, the complete log likelihood is then given by

log(p(x0:T , y1:T ; θ)) = log(p (x0; θ)) +

+

T∑

t=1

log(p (xt|xt−1; θ)) +

T∑

t=1

log(p (yt|xt; θ)). (5.5.5)

In this section, we maximize the complete likelihood with respect to both
the unknown parameter (θ) and the unobserved state sequence (x0:T ),
rather than maximizing the likelihood of the observed data with respect
to parameters. This leads to dividing the problem into two interconnected
sub problems — subproblem A (state estimation) and subproblem B (pa-
rameter estimation). The details are described below.
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5.5.1.1 Subproblem A

Estimation of (smoothed) state assuming the parameter values: First as-
sume that θ = θold. The state estimation problem is then finding

x̂0:T = arg max
x0:T

p(x0:T , y1:T ; θold). (5.5.6)

Since

p(x0:T |y1:T ; θ) =
p(x0:T , y1:T ; θ)

p(y1:T ; θ)
(5.5.7)

and the denominator in equation (5.5.7) is independent of x0:T , the state
estimation problem in (5.5.6) can be cast into the usual maximum a poste-
riori (MAP) sequence of x0:T conditioned on observed y1:T and (assumed)
θold. For a general nonlinear and/or non Gaussian state space model, this
problem is nontrivial. However, one can approximate this MAP sequence
using the particle based method developed by Godsill et al. (2001). The
memory requirement of this MAP sequence algorithm is O(NT ) and the
computational complexity is O(N2T ). However, since we are dealing with
short data regime, memory requirement or complexity is not a serious issue
here.

5.5.1.2 Subproblem B

Estimation of the parameter assuming the state is known : Given all the
observation data y1:T and the estimate of the state, x̂0:T ≡ x̂0:T (y1:T , θold)
from sub problem A, one can obtain a new estimate of θ as

θnew = θ̂ = arg max
θ

p(x̂0:T , y1:T ; θ). (5.5.8)

This maximization problem can be translated into finding the zeros of the
gradient of the complete log likelihood. Define L(θ) , log p(x0:T , y1:T ; θ).
Then θ̂ is a solution to

∇L(θ) = 0 (5.5.9)

where ∇ is the gradient vector (w.r.t θ). From (5.5.5) we get

∇L(θ) =

[∇p (x0; θ)

p (x0; θ)

]

x̂0:T
y1:T

+
T∑

t=1

[∇p (xt|xt−1; θ)

p (xt|xt−1; θ)

]

x̂0:T
y1:T

+

T∑

t=1

[∇p (yt|xt; θ)

p (yt|xt; θ)

]

x̂0:T
y1:T

. (5.5.10)
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Equation (5.5.9) and (5.5.10) lead to a system of nonlinear equations in θ
and θnew can be obtained by solving them. Typically Θ =

∏m
i=1(θi,min, θi,max)

and if θnew does not belong to Θ, to prevent divergence, a standard prac-
tice consists of reprojecting θnew inside Θ. The reprojections are done such
that if θnew

i < θi,min, θnew
i is set to θi,min. Similarly, when θnew

i > θi,max,
θnew
i is set to θi,max (Bar-Shalom (1972)).

Now, starting with an initial value θ(0), the final solution is obtained by
iterating between these two subproblems until a pre-specified stopping cri-
terion is reached. The stopping criterion may be reached, for example,
when either of the following is satisfied:

C1 : for a pre-determined ∆, when
‖θ̂(k)−θ̂(k−1)‖
‖θ̂(k−1)‖ ≤ ∆

C2 : when the iteration stage k reaches (pre-defined) maximum allowable
stage (KMax). This signifies that the iteration does not converge and
one has to start afresh with new initial values of parameters.

This is essentially a batch method of estimating the parameters. However,
estimates obtained through our method using limited observations can
be used, for example, as initial values of the parameters in any online
parameter estimation method. This (batch) method provides means to
obtain parameter estimates without any addition of artificial process noise.
Therefore, it can be expected that our method will provide more accurate
parameter estimates than the augmented particle filter.

It is important to emphasize here the relation of the above algorithm to
the popular EM algorithm (Wills et al. (2008); Schön et al. (2009); Ninness
(2009); Kantas et al. (2009)). Although, the above algorithm appears to be
very similar to the EM algorithm, however, as outlined in Yeredor (2000),
the difference essentially lies in the parameter updating step. In the EM
algorithm, to get the new update on the parameters, one maximizes the
expectation of the log pdf. In other words, the parameters are updated as

θnew = θ̂ = arg max
θ

Eθold [log p(x0:T , y1:T ; θ)]

= arg max
θ

∫
[log p(x0:T , y1:T ; θ)]p(x0:T |y1:T ; θold)dx0:T .

On the other hand, for our algorithm, the parameters are updated using
the following iteration

θnew = θ̂ = arg max
θ

log p(x̂0:T (θold), y1:T ; θ).
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Thus, instead of maximizing the expectation of the log pdf, here we plug
in the estimated MAP sequence x̂0:T (θold) and then maximize the same
log pdf.

The EM is popular due to the fact that the sequence {lT (θk) ≡ p(y1:T ; θk)}k

generated by the EM is guaranteed to be non decreasing i.e. lT (θk+1) ≥
lT (θk) (see for example, the article by Ninness (2009) for the proof). How-
ever, it is to be noted that if Eθold[log p(x0:T , y1:T ; θ)] is numerically ap-
proximated (which is often the case in the context of any particle filter-
ing/smoothing based EM algorithm), this guarantee does not hold any
longer (Kantas et al. (2009)). Moreover, the EM algorithm is essentially
an approach for solving the maximum likelihood problem. Thus, when the
available observation data is short, the EM algorithm has the same limi-
tation as that of maximum likelihood method, i.e. the asymptotic optimal
property does not hold.

In the following section, we illustrate our method by means of an ex-
ample.

5.5.2 Simulation results

We demonstrate the proposed method on the benchmark time series model
given by equations (5.2.6)–(5.2.7). Note that here, ∂f(.)

∂θ1
= xk−1 and ∂f(.)

∂θ2
=

xk−1

1+x2
k−1

. Therefore, the use of (5.5.10) reduces (5.5.9) to

T∑

k=1

[
{xk − f(.)}∂f(.)

∂θ1

]

x̂0:T

= 0

T∑

k=1

[
{xk − f(.)}∂f(.)

∂θ2

]

x̂0:T

= 0.

For simulations, true values are taken to be θ∗1 = 0.5 and θ∗2 = 25 re-
spectively. We use T = 50, N = 500 particles and so called ”Exact
Moment Matching (EMM) proposal” (Saha et al. (2009b)). We start with

θ
(0)
1 = −0.3 and θ

(0)
2 = 10. Here we perform 40 iterations regardless of stop-

ping criteria and the estimated parameters with different iteration stages
are shown in Figure 5.24 and Figure 5.25. If working with ∆ = 0.005,
we would have stopped at iteration 7. We should note that both the esti-
mates show distinct bias, even with increasing number of iteration. This
is already observed in linear-Gaussian case (Yeredor (2000)). We further
compare our approach to the augmented state space method where the
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variance of the artificial noise is reduced over time as in Gustafsson and
Hriljac (2003). For a qualitative comparison, we assume θ2 fixed at its true
value and estimate θ1 when the number of available observation data is 50.
Our estimate of θ1 is similar to the previous example and we do not include
it here. Here we note that for the augmented state method, the selection
of initial variance of the artificial noise is not obvious and the convergence
of the additional state (parameter) depends on this selection. Our method
does not have this difficulty. For the subsequent implementation of the

augmented method, we take p(θ
(0)
1 ) ∼ uniform (−0.5, 1.5), initial variance

of the artificial noise = 1, T = 1000, N = 2000 and state transition den-
sity as proposal. As seen from Figure 5.26, estimate of θ1 using augmented
method, keeps oscillating even after large time steps. On the other hand,
our method does converge quite rapidly, albeit with a distinct bias. If
this bias can somehow be theoretically ascertained, then our method will
decidedly give better result. Next, for a quantitative comparison, we con-
sider the same dynamic system as defined in (5.2.6)–(5.2.7) and estimate
θ ≡ (θ1, θ2). We then compare the estimates in terms of MSE over 100
Monte Carlo runs. For our approach, assuming Θ = (−1.5, 2.5) × (15, 35),

we start with θ
(0)
1 = 0.1 and θ

(0)
2 = 15, N = 500 particles, T = 50 and

use EMM proposal. For each run, we perform 20 iterations irrespective of
the stopping criteria. The MSE obtained is 65.5664. For the augmented
method, the model is rewritten as

xk = θ1,k−1xk−1 +
θ2,k−1xk−1

1 + x2
k−1

+ 8cos(1.2k) + wk

θ1,k = θ1,k−1 + η1,k

θ2,k = θ2,k−1 + η2,k

yk =
x2

k

20
+ vk,

where η1,k and η2,k are the artificial noises, k = 1, · · · , T . In vector nota-
tion, the above model can be expressed as

Xk = g(Xk−1) + Wk

yk = h(Xk) + vk,

where Xk = [xk θ1,k θ2,k]
T and Wk = [wk η1,k η2,k]

T are new state and
process noise vector respectively. We take p(θ1,0) ∼ uniform (−1.5, 2.5),
p(θ2,0) ∼ uniform (15, 35) (as used for Θ above), η1,k ∼ N (0, 0.1

k
), η2,k ∼
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N (0, 5
k
), N = 2000, T = 1000 and state transition density as proposal.

In 64 out of 100 runs, the algorithm gave meaningful results for the like-
lihood (i.e. p(yk|Xk)). In the remaining situations, the likelihood became
too small to contribute to the weights and the process stopped after a
while. The problem perhaps lies with the fact that 2000 samples for Xk

are not sufficient enough to explore the state space effectively. However,
for this case, we took only those 64 runs for computing the MSE and the
MSE obtained (over 64 runs) is 61.1643.
Although the above two methods are similar in terms of MSE as obtained
here, we note that a direct comparison is not meaningful in the sense that
we have discarded the remaining 36 runs for the augmented method. Also,
the selection of initial variance of the artificial noises in the augmented
method is not obvious and the convergence of the additional state (param-
eter) depends on this selection. On the other hand, our method can work
with static parameter and as such, no artificial dynamics is required. Thus,
despite the bias, our method is clearly preferable for short data series.
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Figure 5.24: Estimate of θ1 w.r.t. iteration stage.
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Figure 5.25: Estimate of θ2 w.r.t. iteration stage.
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Figure 5.26: Estimate of θ1 using augmented state method.
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5.6 Concluding Remarks

In this chapter, we have introduced some new particle filtering/smoothing
based schemes for estimating the unknown parameters of a general state
space problem. We observe that these estimation procedures work quite
well. We have also outlined the possible limitations of each method. Their
performances are also illustrated through numerical simulations.
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Chapter 6

Conclusions and Future
Research

This chapter summarizes the main contributions of this thesis and presents
some directions for further research.

6.1 Conclusions

In this thesis we have studied various aspects of particle filtering and
smoothing algorithms. The particle filtering method is an elegant tool
to approximate the posterior of some (unobserved) state process (xk) from
the noisy observation process (yk) in the form of weighted random samples.

Since the particle filtering algorithm forms the basis of our subsequent
works, a brief description of a generic particle filter algorithm is given in
Chapter 2. It consists of three basic blocks – (a) generating the sam-
ples sequentially according to some importance function, (b) updating the
weights of those samples given the recent observation and (c) resampling
when necessary. The roles of importance sampling and resampling steps
are also discussed.

Chapter 3 deals with the importance function. As the random samples
representing the posterior are generated from this distribution, a proper
selection of the importance function plays a key role for the efficiency of
the underlying particle filtering method. Often the state transition density
p(xk|xk−1), which is easily available from the model, is used as the impor-
tance function. However, with this choice, a lot of samples are wasted to
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explore the state space, especially when the measurement is very informa-
tive. On the other hand, an importance function of the form p(xk|xk−1, yk)
is a smarter choice as it also incorporates the recent observation. In fact, it
is shown by Doucet et al. (2000) that this importance function is optimal
in the sense that the conditional variance of the un-normalized importance
weight is minimum. Later in chapter 5, we have seen that for some impor-
tant problems in finance, this optimal importance function comes naturally
due to the typical problem set up. In general, however, this is not the case
and in practice, it is difficult to evaluate this function and/or to sample
from it. We have introduced a new Gaussian importance function (EMM),
which approximates the aforementioned optimal function using moment
matching method. To be more specific, the EMM method is based on
Gaussian approximation of the conditional distribution of (xk, yk), given
xk−1, with the first two moments matched exactly to those of the true
conditional distribution. Thus, to use the proposed method, one needs to
know the moments of the system dynamics up to the second order. This
is satisfied, for example, when the noise processes are additive Gaussian
and the observation equation is polynomial. When the exact moments are
not known but the noise processes are additive Gaussian and the obser-
vation model is smooth, one can use a polynomial approximation of the
observation model to derive this importance function. We have further
compared our proposed EMM method with the other existing Gaussian
importance functions (LIN, GHQ, JUQ, UPF), which also incorporate the
latest observation in the importance function. The numerical results show
that our EMM method provides better results when considering the trade
off between the performance (RMSE) and the computational load. The
performances of the different importance functions are also compared in
terms of Kullback-Leibler divergence.

In Chapter 4, we have studied the problem of extracting the maximum
a posteriori (MAP) estimate of the state using the weighted particle rep-
resentation of the state posterior. The particle with the highest weight is
often postulated as the MAP estimate (without proof or evidence) even in
quite recent literature. However, it has been shown recently that this is
not the true MAP estimator. Subsequently, a filter MAP estimator in the
particle filtering set up has been introduced by Driessen and Boers (2008a).
In this chapter, we have presented an estimator for the smoothed marginal
MAP, which extracts the required MAP from the weighted particle cloud
of the smoother. The particle cloud for the smoother can be generated
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using either the forward-backward smoother or the generalized two filter
smoother. We have presented algorithms for the smoothed marginal MAP
using either of the smoothers. This smoothed marginal MAP estimator
is further applied to estimate the unknown initial condition of a dynamic
system. In this chapter, we have also explored a couple of possible im-
provements in the filter MAP algorithm proposed by Driessen and Boers
(2008a). While Driessen and Boers (2008a) have maximized the filter pos-
terior along the particles, we have studied the performance of gradient
based optimization with the filter MAP of Driessen and Boers (2008a)
as the starting point. We observe that the gradient based optimization
makes the method unnecessarily compuationally intensive without pro-
viding much gain in terms of RMSE. On the other hand, by tweaking
the number of particles in constructing the predictive density, the com-
putational load can be highly reduced without affecting much on RMSE
performance.

Chapter 5 addresses the issues of estimating the parameters of a general
state space model. One very popular way of estimating the parameter in
this framework, is to augment the parameter as an additional state driven
by artificial noise. However, the introduction of these artificial dynamics
turns the fixed parameter into a slowly varying one. In this chapter, we
have proposed some particle filtering/smoothing schemes for estimating
the parameter, which either avoids or minimizes the effect of the artifi-
cial dynamics within this augmented framework. Recall that the unknown
initial condition of a state is estimated by the smoothed marginal MAP
in Chapter 4. Furthermore, in the usual augmented framework, the ini-
tial augmented state (parameter) is not corrupted by any artificial noise.
Subsequently, we have taken the smoothed marginal MAP of the initial
augmented state to be the estimate of the true (fixed) parameter. Two
other augmented methods, where no artificial noise is added, are also con-
sidered. The first one is based on the marginalized particle filter method,
where the fact that the parameters enter in a linear way is exploited and
subsequently a Kalman filter is used to estimate the parameters. For the
other method, the parameter is augmented similarly without adding any
artificial noise and particle filter is applied on the model. Furthermore, we
have introduced another method, which is not an augmented method, to
estimate the static parameter. This is based on maximizing the joint likeli-
hood with respect to both the unknown parameter and the unknown state
sequence. This leads to two interconnected subproblems – estimation of the
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state given the parameter and then estimating the parameter conditioned
on the state obtained from the previous subproblem. Thus, starting with
an initial guess on the parameter, the final parameter estimate is obtained
by iterating between these two subproblems until a convergence in param-
eter is obtained. Finally, we have considered a very challenging practical
problem in mathematical finance, where we have estimated the unobserved
volatility (along with the model parameter) using the celebrated stochas-
tic volatility model of Heston including jumps. The model parameters
are estimated using the augmented state space formulation without any
parameter dynamics.

6.2 Future Research

In this section we review several issues which need urgent attention in the
near future.

• In Chapter 3, we have proposed the importance function to be a Gaus-
sian approximation of the optimal importance function p(xk|xk−1, yk) by
matching the first two moments of the dynamical system. The advantage
was that it is easily implementable (easy to sample from and evaluate).
When the process noise is from a non-Gaussian family, which is still
reasonably easy to implement as an importance function, one may take
the importance function to be from the same family. In other words,
by approximating the optimal importance function p(xk|xk−1, yk) by a
distribution from the same family as that of p(xk|xk−1). In doing so,
one needs to match as many moments as required to identify all the
parameters of the distribution.

• The filter MAP for the time step k as described in Chapter 4 (pf-MAP),
depends on the (weighted) particles cloud of the immediate past (i.e. on
particle cloud at time step k − 1). This is a constraint on the storage
requirement. Therefore, one may consider developing a MAP estimator,
other than using the kernel fitting method, which does not have this
constraint.

• In the context of estimation of a fixed but unknown initial state (as
treated in section 4.7.1.1), it would be interesting to study the effect of
the assumed initial distribution (possibly dependent on unknown initial
state) and further convergence issues.
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• One may possibly extend the smoothed marginal MAP estimator as de-
veloped in Chapter 4, to a jump Markov system.

• In Chapter 5, we have applied the smoothed marginal MAP for estimat-
ing the parameter in the augmented framework. Here, we have followed
the usual step of augmenting the parameter as additional state driven
by artificial noise. However, the selection of the variance of this artificial
noise is not obvious. It would be interesting to study the sensitivity of
the estimate of the parameter on this selection.

• In the parameter estimation problem with large number of parameters,
if one uses the augmented method, it is very difficult to explore the state
space effectively with limited number of particles. This can be ascribed
to the fact that the additional states (parameters) are independent of
each other and the observation carries the information regarding these
additional states indirectly via the true state. As a result, it becomes
very difficult to explore the region (in this high dimensional space) where
the joint posterior density would be high. Therefore further research
attention is needed to address this problem.

• The whole issue of convergence analysis is a major research area where
more research effort is needed.
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Appendix A

Derivation of Importance
function by linearization
(LIN)

Let us consider a system dynamics with linear observation equation and
additive Gaussian noises :

xk = f (xk−1) + wk, wk ∼ N (0, Q)

yk = c1 + c2xk + vk, vk ∼ N (0, R).

Further assume that wk and vk are independent. We shall show that the
conditional distribution of xk given xk−1 and yk is Gaussian with appro-
priate mean and variance.

To that end, we first derive the joint distribution of (xk, yk) conditional
upon xk−1. Note that yk can be rewritten as

yk = c1 + c2f (xk−1) + c2wk + vk,

so that (
xk

yk

)
=

(
f (xk−1)

c1 + c2f (xk−1)

)
+

(
I 0
c2 I

)
·
(

wk

vk

)
.

We rewrite this as (
xk

yk

)
= A + B

(
wk

vk

)
,

where A is a vector and B is a matrix given by

A =

(
f (xk−1)

c1 + c2f (xk−1)

)
and B =

(
I 0
c2 I

)
.
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Hence from the theory of multivariate Gaussian distribution it follows that
given xk−1 the conditional distribution of

(
xk

yk

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

where

µ1 = f (xk−1) , µ2 = c1 + c2f (xk−1) , (A.0.1)

Σ11 = Q, Σ12 = QcT
2 = ΣT

21, Σ22 = c2QcT
2 + R. (A.0.2)

Furthermore, f(xk|xk−1, yk) ∼ N (mk, Vk), with

mk = µ1 + Σ12Σ
−1
22 (yk − µ2), and (A.0.3)

Vk = Σ11 − Σ12Σ
−1
22 Σ21. (A.0.4)

Now, using the following matrix identity (Bagchi (1993), equations (3.12a)-
(3.12c), page 60)

(A − BD−1BT )−1 = A−1 + A−1B
(
D − BT A−1B

)−1
BTA−1

we see

V −1
k =

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1

=
(
Σ11 − Σ12Σ

−1
22 ΣT

12

)−1

= Σ−1
11 + Σ−1

11 Σ12

(
Σ22 − ΣT

12Σ
−1
11 Σ12

)−1
ΣT

12Σ
−1
11

= Q−1 + Q−1QcT
2

(
c2QcT

2 + R − c2QQ−1QcT
2

)−1
c2QQ−1

= Q−1 + cT
2 R−1c2. (A.0.5)
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Also, from (A.0.3), using (A.0.1), (A.0.2), (A.0.4), and (A.0.5) we have

mk = µ1 + Σ12Σ
−1
22 (yk − µ2)

= µ1 − Σ12Σ
−1
22 c2f (xk−1) + Σ12Σ

−1
22 (yk − c1)

= f (xk−1) − Σ12Σ
−1
22 c2f (xk−1) + QcT

2 Σ−1
22 (yk − c1)

=
(
I − Σ12Σ

−1
22 c2

)
f (xk−1) + VkV

−1
k QcT

2 Σ−1
22 (yk − c1)

=
(
I − Σ12Σ

−1
22 c2

)
QQ−1f (xk−1) +

+ Vk

(
Q−1 + cT

2 R−1c2

)
QcT

2 Σ−1
22 (yk − c1)

=
(
Q − Σ12Σ

−1
22 c2Q

)
Q−1f (xk−1) +

+ Vk

(
cT
2 + cT

2 R−1c2QcT
2

)
Σ−1

22 (yk − c1)

=
(
Σ11 − Σ12Σ

−1
22 Σ21

)
Q−1f (xk−1) +

+ Vkc
T
2 R−1

(
R + c2QcT

2

)
Σ−1

22 (yk − c1)

= VkQ
−1f (xk−1) + Vkc

T
2 R−1Σ22Σ

−1
22 (yk − c1)

= VkQ
−1f (xk−1) + Vkc

T
2 R−1(yk − c1)

= Vk

[
Q−1f (xk−1) + cT

2 R−1(yk − c1)
]

(A.0.6)

Now, to obtain the expressions (3.4.2) and (3.4.3) of section 3.4.1, re-
call, from (3.4.1), that the linearized observation equation is given by

yk ≈ h(f(xk−1)) + Ck(xk − f(xk−1)) + vk,

so that
c1 = h(f (xk−1)) − C

k
f (xk−1) and c2 = C

k
.
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Appendix B

Particle filtering
implementation of the Bates
model with optimal
importance function

Here we describe the so called Bates model for volatility in mathematical
finance and work out the details regarding the implementation of the par-
ticle filter. The model can be described as follows. The (observed) stock
price (St) evolves according to:

dSt = µSStdt +
√

vtStdBt + StdZ
J
t − λmJStdt, (B.0.1)

dvt = κ(θ − vt)dt + ξ
√

vtdZt (B.0.2)

where vt is the unobserved volatility, Bt and Zt are standard Brownian
motion processes with correlation ρ. ZJ

t denotes the pure-jump process
which contains two components: random jump-event times and random
jump sizes. The jump-event times {Ti; i ≥ 1} arrive with a constant
intensity λ . Given the arrival of the i-th jump event, the stock price
jumps from ST−

i
to ST−

i
exp(U s

i ) where U s
i is normally distributed with

mean µJ and variance σ2
J , independent of Bt and Zt, inter-jump times

and of U s
j , for j 6= i. Intuitively, the conditional probability at time

t of another jump before t + ∆t is, for some small ∆t, approximately
λ∆t and, conditional on a jump event, the mean relative jump size is
mJ = E(exp(U s) − 1) = exp(µJ + σ2

J/2) − 1. Combining the effects of
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random jump timing and size, the last term λmJStdt in (B.0.1) compen-
sates for the instantaneous change in expected stock introduced by the
pure-jump process ZJ

t .

It follows that the logarithm of the stock yt = log(St/S0) satisfies

dyt = (µS − λmJ − 1

2
vt)dt +

√
vtdBt + dqJ

t , (B.0.3)

where qJ
t is a compound Poisson process with intensity λ and the jump size

is normally distributed as N (µJ , σ2
J). Our aim is to estimate recursively

the volatility process vt and the unknown system parameters from the
observed data {ys; 0≤s≤t}. By introducing another standard Brownian
motion process Z̃t, which is independent of Bt, we can express dZt as

dZt =
√

1 − ρ2dZ̃t + ρdBt. (B.0.4)

Now using dBt as obtained from equation (B.0.3), one can write

dZt =
√

1 − ρ2dZ̃t +
ρ√
vt

(dyt (B.0.5)

−(µS − λmJ − 1

2
vt)dt − dqJ

t ). (B.0.6)

Equation (B.0.2) can now be expressed as

dvt = κ(θ − vt)dt + ξ
√

vt

√
1 − ρ2dZ̃t

+ρξ(dyt − (µS − λmJ − 1

2
vt)dt − dqJ

t ). (B.0.7)

In order to apply the particle filtering algorithm to the (continuous
time) state space model given by (B.0.3) and (B.0.7), we need to dis-
cretize the system first. We do this using Euler scheme. We select this
scheme mainly due to its relative simplicity and limited computational
load. However, while the continuous process itself is always non negative,
the discretization is not (Lord et al. (2006)). As a result, precautionary
care has to be taken to ensure the non negativity of the (discretized) state
evolution. It is to be noted here that for implementing a particle filter,
one needs to specify only the probabilistic description of state transition
(together with initial state) and observation models. In this case, the ex-
act state transition density is known analytically, which is non central chi
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APPENDIX B. PARTICLE FILTERING IMPLEMENTATION OF
THE BATES MODEL WITH OPTIMAL IMPORTANCE FUNCTION

square and it is possible to simulate exactly from such a process (Broadie
and Kaya (2006)). However, this is computationally involved and we chose
to work only with the discretized version of the model. The discretization
is done as follows:

yk − yk−1 = (µS − λmJ − 1
2vk)∆t

+
√

vk−1∆Bk + ∆qJ
k , (B.0.8)

where ∆qJ
k is the jump in qJ

tk
. Furthermore,

vk − vk−1 = κ(θ − vk−1)∆t + ξ
√

vk−1

√
1 − ρ2∆Z̃k

+ξρ(yk − yk−1 − (µS − λmJ − 1

2
vk−1)∆t − ∆qJ

k ). (B.0.9)

We observe here that the (discrete time) state space model given by
(B.0.8)–(B.0.9) does not have the Markovian structure that is commonly
assumed. We, therefore, derive here explicitly the optimal importance
function and the weight update equation.

Note that if we work with sequential importance sampling i.e. equation
(2.3.13) holds, then from (2.3.6) and (2.2.5), it follows that

w
(i)
k ∝ w

(i)
k−1

p(yk|v(i)
0:k, y0:k−1)p(v

(i)
k |v(i)

0:k−1, y0:k−1)

π(v
(i)
k |v(i)

0:k−1, y0:k)
. (B.0.10)

The optimal importance function in the sense that the variance of the
weights conditioned on simulated past trajectory v0:k−1 and y0:k is mini-
mum (Doucet et al. (2000)), can be obtained here as

π(vk|v0:k−1, y0:k) = p(vk|vk−1, yk−1:k). (B.0.11)

Assuming that at any discretization time period, the number of jump
occurring is at most one, we have from Cont and Tankov (2004),

p(vk|vk−1, yk−1:k) = {(1 − e−λ∆tλ∆t)√
2πσ̄2(vk−1)

× exp[−(vk − m̄(vk−1, yk−1:k))
2

2σ̄2(vk−1)
]

+
e−λ∆tλ∆t√

2π(σ̄2(vk−1) + ξ2ρ2σ2
J)

× exp[−(vk − m̄(vk−1, yk−1:k) + ξρµJ)2

2(σ̄2(vk−1) + ξ2ρ2σ2
J)

]}, (B.0.12)
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where

m̄(vk−1, yk−1:k) = vk−1 + κ(θ − vk−1)∆t

+ρξ(yk − yk−1 − (µS − λmJ − 1

2
vk−1)∆t)

and

σ̄2(vk−1) = ξ2vk−1(1 − ρ2)∆t.

Hence we obtain the optimal importance function for the particle filter.
Additionally, in order to ensure that the volatility vk is non negative, we
enforce a priori constraint such that the samples selected from this proposal
are all positive.

To complete the weight update equation (B.0.10), we need to calculate
p(vk|v0:k−1, y0:k−1) and p(yk|v0:k, y0:k−1). Substituting (yk − yk−1) from
equation (B.0.8) into equation (B.0.9), we get

vk = (1 +
1

2
ξρ∆t)−1{vk−1 + κ(θ − vk−1)∆t

+
1

2
ξρvk−1∆t + ξ

√
vk−1

√
1 − ρ2∆Z̃k

+ξρ
√

vk−1∆Bk}.

Hence, p(vk|v0:k−1, y0:k−1) = p(vk|vk−1). This is expected as vk does not
contain any jump. Consequently, we have

p(vk|vk−1) = N (m̃(vk−1), σ̃(vk−1))

where

m̃(vk−1) = (1 +
1

2
ξρ∆t)−1{vk−1 + κ(θ − vk−1)∆t

+
1

2
ξρvk−1∆t}

and

σ̃(vk−1) = (1 +
1

2
ξρ∆t)−1ξ

√
vk−1

√
∆t.

For the observation likelihood function p(yk|v0:k, y0:k−1), we note from
(B.0.8) that

p(yk|v0:k, y0:k−1)= p(yk|yk−1, vk, vk−1).
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which can be obtained as follows:

p(yk|yk−1, vk−1:k) =
(1 − e−λ∆tλ∆t)√

2πvk−1∆t

× exp(−(yk − (yk−1 + (µS − λmJ − 1
2vk)∆t + uk))

2

2vk−1∆t
)

+
e−λ∆tλ∆t√

2π(vk−1∆t + σ2
J)

× exp(−(yk − (yk−1 + (µS − λmJ − 1
2vk)∆t + uk) − µJ)2

2(vk−1∆t + σ2
J)

).

where
uk =

ρ

ξ
[vk − vk−1 − κ(θ − vk−1)∆t].
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Summary

Particle filtering/smoothing is a relatively new promising class of algo-
rithms to deal with the estimation problems in nonlinear and/or non-
Gaussian systems. Currently, this is a very active area of research and
there are many issues that are not either properly addressed or are still
open.

One of the key issues in particle filtering is a suitable choice of the
importance function. The optimal importance function which includes the
information from the most recent observation, is difficult to obtain in most
practical situations. In this thesis, we present a new Gaussian approxi-
mation to this optimal importance function using the moment matching
method and compare it with some other recently proposed importance
functions.

In particle filtering/smoothing, the posterior is represented as a weighted
particle cloud. We develop a new algorithm for extracting the smoothed
marginal maximum a posteriori (MAP) estimate from the available par-
ticle cloud of the marginal smoother, generated using either the forward-
backward smoother or the two filter smoother. The smoothed marginal
MAP estimator is then applied to estimate the unknown initial state of a
dynamic system.

There are many approaches to deal with the unknown static system
parameters within particle filtering/smoothing set up. One common ap-
proach is to model the parameters as a part of the state vector. This is
followed by adding artificial process noises to this model and then esti-
mate the parameters along with the other state variables. Although this
approach may work well in (certain) practical situations, the added pro-
cess noises may result in a unnecessary loss of accuracy of the estimated
parameters. Here we propose some new particle filtering/smoothing based
algorithms, where we avoid any effect of the artificial dynamics on the
estimate of the parameters.



Samenvatting

Particle filtering/smoothing is een relatief nieuw veelbelovende klasse van
algoritmen om de schattingsproblemen bij niet -lineaire en/of niet-Gaussisch
systemen aan te pakken. Op dit moment is dit een erg actief onderzoeksge-
bied en er zijn diverse aspecten hiervan die kregen geen voldoende aandacht
of zijn ze nog niet opgelost.

Een centraal punt van aandacht bij de particle filtering is de juiste
keuze van de importance functie. De optimale importance functie bevat
informatie over de meest recente waarneming en is in het algemeen erg
moeilijk te vinden. In dit proefschrift een nieuw Gaussisch benadering van
de optimale importance functie is ontwikkeld en vergeleken met een paar
andere recentelijk voorgestelde importance functies.

In particle filtering/smoothing, de posterior is weergegeven door een
gewogen deeltjeswolk. Wij ontwikkelen nieuwe algoritme om de gesmoothed
marginale maximale a posteriori (MAP) schatter van de beschikbare deelt-
jeswolk te extraheren. Het wordt voortgebracht door de forward-backward
smoother of de twee filter smoother. Vervolgens is de gesmoothed marginale
MAP schatter toegepast bij het schatten van de onbekende begintoestand
van een dynamisch systeem.

Er zijn diverse manieren om de onbekende statisch systeem parameters
binnen het kader van de particle filtering/smoothing te behandelen. Een
standaard aanpak is het meenemen van de onbekende parameters binnen
de toestandsvector als additionele componenten. Vervolgens wordt kun-
stmatige procesruis toegevoegd en de parameters worden mede geschat
met de echte toestandsvectoren . Hoewel deze aanpak bevredigend werkt
in (bepaalde) praktische situaties, de toegevoegde procesruis kan leiden
tot onnodige vermindering van de nauwkeurigheid van de geschatte pa-
rameters. We formulieren hier een paar nieuwe algoritmen gebaseerd op
particle filtering/smoothing waarbij mogelijke invloed van de kunstmatige
dynamica op de schatting van de parameters wordt vermeden.
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